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Abstract

NeRF-based methods reconstruct 3D scenes by build-
ing a radiance field with implicit or explicit represen-
tations. While existing state-of-the-art methods for 3D
scene reconstruction can capture geometry and appearance
of a scene accurately, the quality of the rendered novel
views is bounded by the training views. On the other
hand, single-image super-resolution aims to restore low-
resolution (LR) images to high-resolution (HR) counter-
parts and enhance details as well as textures simultane-
ously. To improve the rendering quality of a radiance field
trained with LR training views, we propose Arbitrary-Scale
Super-Resolution NeRF (ASSR-NeRF), a novel framework
for super-resolution (SR) of neural radiance field. A voxel-
based radiance field is first constructed with training views.
Then, an attention-based VoxelGridSR module performs SR
directly on the constructed radiance field, instead of the ren-
dered 2D views, to generate finer details and textures in ren-
dered views. Experiments with both quantitative and quali-
tative comparisons show that our proposed method signifi-
cantly improves rendering quality.

1. Introduction

Novel view synthesis (NVS), or 3D scene reconstruction,
aims to synthesize an image of a 3D scene from arbi-
trary viewing direction given multi-view images and cam-
era poses. NeRF [22] first proposes to handle NVS with
a multi-layer perceptron (MLP), which maps 3D positions
and viewing directions to view-dependent colors and occu-
pancy. Since NeRF learns a continuous volumetric repre-
sentation, it is capable of synthesizing novel views at ar-
bitrary resolution. Although NeRF can generate appealing
results, it has lengthy training and rendering time. Many
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Figure 1. Given LR training views of a scene, our proposed
ASSR-NeRF performs arbitrary-scale super-resolution to generate
HR renderings with rich details.

following works [3, 6, 23, 25, 28, 36, 37] then put em-
phasis on reducing training and rendering time. For ex-
ample, Intant-ngp [23] takes only seconds to reconstruct
a 3D scene. Another issue of NeRF is aliasing, happen-
ing when training views and rendering views are different
in resolutions. Methods [2, 3, 10] then propose to mitigate
this issue with mipmap techniques. While current state-of-
the-art NVS methods can accurately synthesize geometry
and appearance of a scene, they are limited by the quality of



training views. Specifically, these methods can “’preserve”
the observed details from training views in their radiance
fields, but fail to ”enrich” details in rendered novel views.

Single-image super-resolution (SISR) aims to synthe-
size a high-resolution (HR) image from its low-resolution
counterpart. Different from mathematical up-sampling
method, e.g., bicubic and bilinear interpolation, SISR meth-
ods [8, 13,16, 17,19, 31, 38] integrate deep learning mod-
els to enrich details and textures that are missed in LR im-
ages. Recently, generative-based methods [15, 30] shows
exciting results with the advent of diffusion models.

A straightforward way of solving the above-mentioned
quality issue of NVS methods is to directly apply SISR
methods on the rendered views. However, applying SISR
on each view independently will cause multi-view inconsis-
tency, i.e., the geometry or appearance of objects isn’t con-
sistent among the results. [29] first proposes NeRF-SR for
super-resolution (SR) of neural radiance field. Given a set
of LR training views and 1 HR reference view of the same
scene, NeRF-SR refines the rendered view through super-
sampling and a patch-based refinement module. Although
it shows satisfying results, requiring an HR reference view
for every scene is not practical. With similar ideas, Super-
NeRF [9] and CROP [35] propose to employ an SR mod-
ule to guide the HR renderings of NeRF, and rendered novel
views can be recycled to guide the SR module, making its
SR outputs view-consistent. However, an lengthy optimiza-
tion is required for every scene, and the super-resolution is
only optimized to a specific scale, limiting the flexibility. A
pre-print [1] proposes to decompose a neural radiance field
to tri-plane [5], and applies a pre-trained SISR model to the
2D feature planes. While this design improves the general-
izability of SR module, i.e., a trained or fine-tuned SR mod-
ule in a scene can be directly applied to another scene, ap-
plying SR on tri-plane independently causes inconsistency
between the planes.

In this work, we propose arbitray-scale super-resolution
NeRF (ASSR-NeRF) without the above-mentioned issues.
Inspired by [28, 36, 37], we first construct the radiance
field of a scene with explicit voxel grids. Similar to [1]
that apply SR on volumetric representation, we propose
an attention-based VoxelGridSR module that will directly
super-resolve on the voxel grids. Since our super-resolution
is performed in 3D space, there won’t be multi-view incon-
sistency. The design of VoxelGridSR is inspired by LIIF
[7], which treats SR as a mapping problem between pixel
coordinates on HR images and colors. Given a coordinate of
queried point in the 3D voxel grid, VoxelGridSR performs
density-distance-aware attention on its nearest neighbors
and outputs a refined voxel feautre. Since the coordinates
in 3D space is continuous, VoxelGridSR is capable of per-
forming ASSR. To make VoxelGridSR generalizable across
scenes, we propose a cross-scene RGBNet to regularize the

latent distribution of voxel features. Finally, a two-stage

multi-scene training is elaborately designed.

In summary, our key contributions of our work are as
follows:

* We propose a novel framework, ASSR-NeRF, for
arbitrary-scale super-resolution on neural radiance fields.

* We propose VoxelGridSR as the core of ASSR-NeRF.
It benefits multi-view consistency by performing super-
resolution on 3D voxel grids.

* We propose a cross-scene RGBNet in ASSR-NeRF
framework to enable a two-stage multi-scene training, im-
proving the generalizability of VoxelGridSR.

» Experiments of both quantitative and qualitative com-
parisons show that our method can effectively performs
super-resolution without multi-view inconsistency.

2. Related Work
2.1. Single-Image Super-Resolution

Single-image super-resolution (SISR) aims to restore an
HR image from its LR counterpart. Early SISR meth-
ods [8, 13, 17, 38] adopt a deep convolutional neural net-
work (CNN) to improve performance. After the advent of
the attention mechanism, methods such as SwinlR [16]
and ESRT [19] achieve competitive performance using a
transformer-based architecture. To further enrich details
in SR results, GAN-based and diffusion based methods
[15, 30, 31] generate finer details as well as rich textures
through adversarial training and powerful diffusion models
respectively. Although excelling in SISR tasks, most meth-
ods can only perform SR on one fixed scale, failing to fit in
real-world scenarios where display devices come in differ-
ent resolutions.

2.2. Arbitrary-Scale Super-Resolution

To perform arbitrary-scale super-resolution (ASSR), one
could first properly upscale the input image, then apply
existing SISR methods. However, this approach is time-
consuming and would lead to unsatisfied results with large
scales. Recently, several methods [4, 7, 11, 14, 33, 34] are
proposed to tackle ASSR with a single model. LIIF [7]
maps arbitrary coordinates to RGB colors with an MLP,
taking encoded image latent as input. With the same idea
as LITF, CiaoSR [4] further applies attention mechanisms
for an enlarged receptive field and ensemble of local predic-
tions.

2.3. Neural Radiance Fields

NeRF [22] has emerged as a prominent method for novel
view synthesis (NVS), showcasing remarkable results with
several input views and known camera poses. Specifically,
NeRF encodes appearance and geometry of a 3D scene into
a multi-layer perceptron (MLP), which takes 3D positions



and viewing directions as input and predicts correspond-
ing colors and densities. Volume rendering techniques then
accumulate the queried properties along a camera ray to
formulate the color of a pixel. Many follow-ups extend
this idea to different settings and scenarios. Some meth-
ods dramatically improve training or rendering efficiency
with explicit structures. DVGO and Plenoxel [28, 36] em-
ploy voxel grids as explicit scene representations, leading
to fast convergence. TensoRF [6] represents a scene with a
tri-plane structure, greatly reducing both training time and
memory usage. On the other hand, some methods focus on
rendering quality. Mip-NeRF [2] leverages mipmapping
to achieve anti-aliasing when rendering at different resolu-
tions, and Tri-MipRF [10] further integrates hash encoding,
inspired by Instang-ngp [23], to enable both instant recon-
struction and anti-aliased rendering.

2.4. Super-Resolution of Neural Radiance Field

Since NeRF [22] learns a continuous volumetric repre-
sentation for NVS, it can directly render novel views in
arbitrary resolutions. However, the rendering procedure
adopted by NeRF samples a scene with a single ray per
pixel, therefore producing renderings with aliasing, blurs
or artifacts when training and rendering views vary in res-
olutions. Supersampling, which samples multiple rays per
pixel, is an effective solution, but it leads to heavy compu-
tational burden for MLP queries. Applying existent SISR
methods to rendered novel views is another straightforward
approach. Nevertheless, super-resolving each view inde-
pendently would cause multi-view inconsistency, i.e., ge-
ometry of an object in different views varies. Several meth-
ods [2, 3, 10] are proposed to mitigate this quality issue,
but they only “preserve” details, failing to “enrich” details
in an HR renderings. For example, given LR training views
of an antique vase, Mip-NeRF [2] can generate anti-aliased
HR novel views but fail to restore finer patterns on the vase.
NeRF-SR [29] first proposes a module to refine details for
rendered HR novel views with one HR reference view of the
same scene. Following the same idea, RefSR-NeRF [12]
performs reference-based SR and reaches massive speedup.
[35] further weakens the assumption that there’s always an
HR reference image for each scene, proposing to super-
resolve novel views with only LR training views. While
these methods show impressive results, the SR modules are
all trained with a fixed scale and a per-scene optimization is
required.

3. Preliminaries

NeRF [22] performs 3D scene reconstruction by encoding
the geometry and occupancy of a scene into a multi-layer
perceptron (MLP). The MLP maps a 3D position z and a
viewing-direction d to the corresponding view-dependent
color c and density 0. NeRF marches ray to render the color

C(r) of each pixel, where r represents the ray marched
from camera center through the pixel. Along each ray, a
total of K points are sampled, and the corresponding color
and density are queried by the MLP. C(r) can then be ob-
tained by the following equations:

K

C(r) = ZTi ;¢ (1a)
i=1

o; =1 —exp(—o0;0;) , (1b)
i1

7= -ay), (10
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where T is the accumulated transmittance from the starting
point to ¢ along the ray; «; is the opacity; (T;;) represents
the probability of termination at point ¢; d; is the distance
to adjacent points. NeRF model can then be trained with a
photometric loss:
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While NeRF shows appealing performance on novel
view synthesis, it struggles with lengthy training and ren-
dering time. Subsequent works [6, 23, 28, 36] improve
training efficiency by replacing the MLP with grid-based
representations. We adopt DVGO [28] as our base model
where modalities of interest, e.g., density, color, of a 3D
position are explicitly stored as voxel features and can be
queried via trilinear interpolation:

interp(z, V) : (R3, RO NexNyxNay 4 RO (3)

where V represents the voxel grid, x is the 3D position, C'is
the dimension of the modality, and N, Ny, N, represents
the 3 dimensions of the grid respectively. A shallow RGB-
Net is additionally employed to map queried voxel feature
and viewing-direction to view-dependent color.

4. Method
4.1. Overview

In this section we describe our method for neural radiance
field super-resolution. As shown in Fig. 2, we propose a
novel framework of arbitrary-scale super-resolution NeRF
(ASSR-NeRF). We propose a voxel-based radiance field
that explicitly represents a 3D scene (Sec. 4.2). To enrich
details in rendered HR novel views, VoxelGridSR module
is proposed to directly super-resolve on the volumetric rep-
resentation (Sec. 4.3). Finally, to make VoxelGridSR gen-
eralizable across different scenes, a cross-scene RGBNet is
proposed to enable a multi-scene training (Sec. 4.4).
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Figure 2. Overview of ASSR-NeRF: Given a query point ¢ along a ray, features and densities of the nearest 8 neighbors are first sampled
from voxel grids. Considering all the above modalities, VoxelGridSR then performs scaled dot-product attention for refined feature and
density. Finally, view-dependent color is obtained through a cross-scene RGBNet.

4.2. Voxel-Based Radiance Field

Following [28, 36], we employ two voxel grids: a density
voxel grid V; € RYNexNyxNz and a feature voxel grid
Vi € ROXNaxNyxN= g explicitly represent geometry and
appearance of a 3D scene respectively, where C' is the di-
mension of feature-space. Given a 3D position 29, we first
sample densities o', features f]* of the 8 nearest points x'
where ¢ € [1, 8], as shown in Fig. 2. Relative distances from
z7 to =7 can then be calculated by:

P=ap —at )
We also obtain the trilinearly interpolated feature f*"* at 29:
fi = interp(29, V¥) 5)

To improve both performance and efficiency, we adopt
tricks including free space skipping, progressively voxel
grid upscaling, which are proposed by [28].

4.3. VoxelGridSR

In previous voxel-based methods [28, 36], a MLP query
directly map f!"* and a viewing direction d to a view-
dependent color. However, when trained on LR views, V;
only learns low-quality features, and trilinear interpolation
can’t help refine the features, resulting in lack of details in
HR renderings.

Inspired by ASSR methods [4, 7], we propose Voxel-
GridSR module to learn a mapping between low-quality and
high-quality features. Instead of applying SR on 2D fea-
ture space like previous methods, VoxelGridSR apply SR
directly on 3D volumetric representation, strongly guaran-
tees multi-view consistency, which is the main challenge of
super-resolution of neural radiance field. VoxelGridSR con-
sists of two parts: Density-Distance-Aware Attention and
Weighted Density Aggregation.

4.3.1 Density-Distance-Aware Attention

While current state-of-the-art SISR methods achieve im-
pressive performances, directly applying them to 3D voxel
grids is impractical due to the booming computational cost.
Inspired by [20, 26, 27], which introduce point-wise atten-
tion in point cloud object detection task, we propose voxel-
wise attention considering both queried densities and fea-
tures.

For a given 3D position 29, the query, key and value are
defined as:

Q : MLP(f"")
K : Stack(MLP([f*; s?;07]),4 € [1,8]) (6)

K2

V : Stack(MLP, ([f]*; s?;07]),4 € [1,8])

where ft”, si and o} are concatenated before the MLP,



Stage 1

e ) 4

Scene A Accumulation

LR Views / =1 \
L —
a oo . / & T Pre-Trained
\ L ATATT] Cross-Scene
Scene B Accumulation // o RGBNet
LR Views T : Scene B
/ HR Views

c,a ! -
/ Scene A

HR Views

Voo B i
Accumulation / // | ’ RGBNet

Stage 2
Lynoto A
Pl | !
\ /\ P [ & . a
// 1 —__ /

VoxelGridSR |

/ Prc—Traincd\’ ¢,

Accumulation

Cross-Scene

/

Figure 3. Two-Stage Multi-Scene Training: In stage 1, volumetric representation from every scene is first constructed with a shared
pre-trained cross-scene RGBNet. In stage 2, all volumetric representations are fixed, and only the VoxelGridSR module is trained. Note

that training views in stage 1 are in LR and those in stage 2 are in HR.

and will be stacked to K and V matrix. Attention can then
be performed by scaled dot-product attention:

Q- K”
VDx

where D is the dimension of voxel feature.

Compared with trilinear interpolation, VoxelGridSR
considers not only the distance from z? to its neighbors but
also the relevance of features. Density information is as
well beneficial because it helps differentiate interfaces be-
tween objects and air.

freﬁne

= softmax( \% @)

4.3.2 Weighted Density Aggregation

To generate novel views with finer geometry, we aggregate
o with the attention weights w; € [0, 1],7 € [1, 8] obtained
from the scaled dot-product attention:

8
o= Z orw; ()
=1
4.4. Multi-Scene Training and Cross-Scene RGB-

Net

Before we describe the training procedure of ASSR-NeRF
in this section, we first define our objective and the train-
ing settings. In SISR, there are HR/LR 2D training im-
age pairs and LR testing images. In our case, which is
super-resolution of neural radiance field, we have training
scenes Sy qin of HR/LR image pairs I/ . /Il . and test-
ing scenes Sjes; of only LR images I}7.,. Our main ob-
jective is to train the proposed VoxelGridSR with Siyqin,
and then the trained VoxelGridSR can be directly applied
to any volumetric representations, i.e., voxel grids, trained
with Ste ste

Fig. 3 shows our two-stage training procedure. In the
first stage, a volumetric representation for every scene
Strain € Strain 18 initialized with Ié:ain' Instead of main-
taining per-scene RGBNet, we employ a pre-trained cross-
scene RGBNet, shared by every scene. RGBNet represents
a mapping function between voxel feature space and color
space. Without this unified mapping function, the latent
space of voxel features can greatly vary between scenes,
hindering the training of VoxelGridSR. In the second stage,
we fix voxel grids and train only VoxelGridSR with I} . .
In this way, VoxelGridSR learns the mapping between low-
quality voxel features to high-quality. After this two-stage
training procedure, VoxelGridSR can directly be applied to
volumetric representaion for Sies¢ € Stest, generating HR

renderings with rich details.

S. Experiments
5.1. Implementation Details and Dataset

We impelment ASSR-NeRF with PyTorch [24]. To sam-
ple all the densities, features and relative distances of near-
est neighbors efficiently given a 3D position, we design
custom CUDA extensions. We set an expected number of
voxels 2562 for both density and feature voxel grids. The
cross-scene RGBNet consists of 3 MLP layers with dimen-
sions of 64, and is pre-trained with a carefully picked 3D
scene, fern in LLFF [21] in our experiments, that general-
izes well. Each volumetric representation in the first stage
is trained for 30k iterations, and VoxelGridSR is trained for
240k iterations in the second stage. In the second stage
of multi-scene training described in 4.4, VoxelGridSR is
trained with voxel grids, V, Vy, of a scene for 2 iterations
in-turn. In our experiments, we use LLFF [21] dataset,
as it contains scenes varying from large-scale hall room to
zoomed-in object, which is very close to real-life scenarios.



x2 x4 x5 x8

scene: Fern PSNRT SSIMT LPIPS] | PSNRT SSIM{ LPIPS| | PSNRT SSIMT LPIPS| | PSNRT SSIMT LPIPS |
Plenoxel [36] 24.49 0.783 0.275 22.48 0.663 0.430 21.62 0.626 0.489 21.38 0.628 0.545
DVGO [28] 24.71 0.765 0.276 22.65 0.647 0.414 21.77 0.609 0.464 21.52 0.609 0.508
[ ASSR-NeRF (ours) [ 24.92 0.773 0.267 [ 22.81 0.657 0406 [ 2191 0.620 0458 [ 21.64 0.620 0.507 |
X2 x4 x5 x8
scene: Trex PSNRT SSIMT LPIPS] | PSNRT SSIMT LPIPS| | PSNRT SSIMT LPIPS| | PSNRT SSIMT LPIPS |
Plenoxel [36] 24.70 0.841 0.224 22.79 0.735 0.402 22.44 0.707 0.471 22.19 0.689 0.531
DVGO [28] 25.28 0.867 0.201 23.16 0.756 0.358 2278 0.724 0.430 22.51 0.699 0.500

[ ASSR-NeRF (ours) |

2533 0.868  0.198 | 2321 0760 0357 [ 22.83 0729 0429 | 2255 0.703  0.500 |

x2 x4 x5 x8
scene: Orchids PSNR1 SSIMt LPIPS| | PSNR1T SSIMt LPIPS| | PSNRT SSIMtT LPIPS| | PSNRT SSIM?T LPIPS |
Plenoxel [36] 20.46 0.712 0.250 19.59 0.587 0.369 19.20 0.548 0.423 19.10 0.549 0.496
DVGO [28] 20.54 0.715 0.251 19.69 0.580 0.372 19.30 0.533 0.421 19.20 0.524 0.478

‘ASSR—NeRF (ours) H 20.64 0.721 0.241 ‘ 19.78 0.591 0.365 ‘ 19.38 0.546 0.416 ‘ 19.28 0.539 0.475 ‘

Table 1. Quantitative results on LLFF [21]: We randomly split LLFF dataset to 7 training scenes S¢rqin and 1 testing scene S¢est. ASSR-
NeRF along with VoxelGridSR is trained with I}7,. . / II" in. All methods then render HR novel views of stcs¢ given I'7,;. ASSR-NeRF
achieves the best performance in all metrics.

TensoRF DVGO ASSR-NeRF (ours)

Figure 4. Qualitative results on LLFF [21]: We train ASSR-NeRF with I7,, /I{!%, of resolutions [756 x 1008]/[378 x 504], and train
other methods with I}7,, of resolution [756 x 1008]. Then, we generate renderings of resolution [3024 x 4032] for comparisons.

5.2. Comparisons and Discussions trained with Strqin € Strain and tested with Siest € Stest.
In Sec. 5.2.2, we prove VoxelGridSR’s ability to generate.

We compare ASSR-NeRF and other state-of-the-art meth- finer details and textures.

ods with few different settings. We first show the generaliz-
ability of VoxelGridSR in Sec. 5.2.1, where VoxelGridSR is
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Figure 5. Qualitative results of multi-view consistency. A hybrid approach first renders novel views in LR then super-resolve them to HR,
leading to multi-view inconsistency. ASSR-NeRF, on the other hand, generates results with consistent textures and shapes.

x2 x4
dataset: LLFF [21] PSNRT SSIM{ LPIPS| |[PSNRT SSIM{ LPIPS |
TensoRF [6]+ Real-ESRGAN [32] | 2444 0782 0249 | 2349 0721 0353
TensoRF [6]+ SwinIR [16] 2540 0811 0258 | 2435 0741 0417
\ ASSR-NeRF (ours) [ 2609 0827 0220 | 2503 0769 0376 |

Table 2. Comparisons with 2D image SR methods on LLFF [21]: ASSR-NeRF directly renders HR novel views. For comparison,
TensorRF [6] first renders LR novel views, then SOTA image SR methods super-resolve the views to HR. Our approach achieves the best

performances in all the metrics.

5.2.1 ASSR-NeRF with Multi-Scene Training

Following the two-stage multi-scene training described in
Sec. 4.4 and Fig. 3, we train ASSR-NeRF and VoxelGridSR
with I /I - from S¢rain € Sirain-Then all the meth-
ods render HR novel views of s;¢s; given I}7,,. In this ex-
periment, I} . /I'" . of resolutions [378 x 504]/[189 x
252] is down-sampled from the 4k LLFF [21] dataset. For
fair comparisons, we train DVGO [28] and Plenoxel [36]
with the same grid resolution 2562, From Tab. 1, we can
see that ASSR-NeRF reaches the best performance in all
testing scenes, indicating that VoxelGridSR is generalizable
across scenes, and is effective in super-resolution of neu-
ral radiance field. Note that while Plenoxel [36] has the

highest SSIM scores in certain scales, ASSR-NeRF always

achieves the highest LPIPS score, indicating the compe-
tence of maintaining high perceptual quality.

5.2.2 ASSR-NeRF with Single-Scene Training

In this experiment, we want to especially show Voxel-
GridSR’s ability to enrich details in HR renderings with
qualitative comparisons. Specifically, given only I7,, €
Stest» We can first down-sample I[7,, to I'l", with an arbi-
trary scale, and take this self-made HR/LR image pairs to
train ASSR-NeRF along with VoxelGridSR. With this strat-
egy, ASSR-NeRF can generate HR renderings with finer de-
tails and textures. We train ASSR-NeRF with I[7, /T!" . of

resolutions [756 x 1008]/[378 x 504], and train other meth-
ods [6, 28] with I, of resolution [756 x 1008]. Then, we



generate renderings of resolution [3024 x 4032] for com-
parison. As shown in Fig. 4, ASSR-NeRF achieves better
perceptual quality when rendering at HR. Shown in the first
row, novel view from DVGO [28] and TensoRF [6] contain
artifacts while ASSR-NeRF render a clearer view. In addi-
tion, ASSR-NeRF renders sharper lines, words and edges,
as shown in the second and the third rows. This experiment
indicates that VoxelGridSR provides an effective aggrega-
tion to refine voxel features.

5.2.3 Multi-View Consistency

We also compare our method with hybrid approaches us-
ing state-of-the-art image SR methods [16, 32]. Real-
ESRGAN [32] adopts a GAN-based architecture and pro-
poses a high-order degradation modeling process to simu-
late real-world degradations of images. SwinIR [16] inte-
grates Swin Transformer [18] into its architecture, reach-
ing SOTA SR performance. In a hybrid approach, a NeRF-
like model first renders LR novel views. Then, an image
SR model super-resolves the novel views to HR. We first
train ASSR-NeRF with I, /Il of resolutions [756 x
1008]/[378 x 504], using the same strategy in Sec. 5.2.2.
For hybrid approaches, we train TensoRF [6] with I{l", of
resolution [378 x 504] and fine-tune pre-trained image SR
models with 117, /Il of resolutions [756 x 1008]/[378 x
504]. During rendering, ASSR-NeRF directly renders novel
views in different scales, while hybrid approaches first ren-
der novel views of resolution [378 x 504] then super-resolve
them. We show a qualitative comparison in Fig. 5, where
ASSR-NeRF and a hybrid approach render multiple views
of the scene Fern from LLFF [21] dataset. We can see that
ASSR-NeRF not only achieves better perceptual quality but
also maintains multi-view consistency, i.e., the shapes and
textures remain the same across different views. On the
other hand, the hybrid approach generates blurry and incon-
sistent results. This multi-view inconsistency is expected,
since SR is applied to 2D image features independently. In
Tab. 2, we provide quantitative comparisons with 2 upsam-
pling scales. We can see that ASSR-NeRF achieves the best
performances in almost all metrics, suggesting that applying
SR on volumetric representations is a better strategy than
applying SR on 2D features.

5.3. Ablation Studies

In this section, we present an ablation study to analyze our
proposed cross-scene RGBNet. Described in Sec. 4.4, the
purpose of cross-scene RGBNet is to unify the latent distri-
bution of voxel features, enabling multi-scene training for
VoxelGridSR. As shown in Fig. 6, ASSR-NeRF along with
VoxelGridSR trained with a unified cross-scene RGBNet
could render satisfied HR results with fine details. However,
if the volumetric representation of every scene initializes its

Scene: Fern

Figure 6. Ablation study of applying VoxelGridSR to volumetric
representations with a cross-scene RGBNet (left) and with a per-
scene RGBNet (right).

own RGBNet, or per-scene RGBNet, VoxelGridSR won’t
be trained properly, leading to blurry results with wrong
color tone and artifacts.

5.4. Discussions

The experiments show that our framework achieves com-
petitive performance. However, one of limitations is the in-
creased training time because swapping voxel grids in GPU
memory causes lots of overhead. It takes about 10Ar to train
VoxelGridSR with 7 scenes, described in Sec. 5.1. Another
limitation is the insufficient 3D training scenes compared to
SISR methods which have extremely huge amount of 2D
training data. Making use of 2D images to compensate the
relative deficient 3D data is a potential research direction.

6. Conclusions

In this work, we propose a novel framework for super-
resolution of neural radiance field. We propose to apply
super-resolution directly on volumetric representation to
eliminate multi-view consistency. To improve flexibility for
real-world applications, we design an arbitrary-scale super-
resolution module, VoxelGridSR, dedicated to refining the
aggregated voxel features. We also propose a cross-scene
RGBNet in our framework to regularize and unify the la-
tent distributions of voxel features. Experiments on various
benchmarks as well as qualitative comparisons show that
our framework is strongly effective in improving rendering
quality.
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