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Abstract. NeRF-based methods reconstruct 3D scenes by building a
radiance field with implicit or explicit representations. While NeRF-
based methods can perform novel view synthesis (NVS) at arbitrary
scale, the performance in high-resolution novel view synthesis (HRNVS)
with low-resolution (LR) optimization often results in oversmoothing.
On the other hand, single-image super-resolution (SR) aims to enhance
LR images to HR counterparts but lacks multi-view consistency. To
address these challenges, we propose Arbitrary-Scale Super-Resolution
NeRF (ASSR-NeRF), a novel framework for super-resolution novel view
synthesis (SRNVS). We propose an attention-based VoxelGridSR model
to directly perform 3D super-resolution (SR) on the optimized volume.
Our model is trained on diverse scenes to ensure generalizability. For un-
seen scenes trained with LR views, we then can directly apply our Vox-
elGridSR to further refine the volume and achieve multi-view consistent
SR. We demonstrate quantitative and qualitatively that the proposed
method achieves significant performance in SRNVS.

Keywords: neural radiance field · super-resolution · feature distillation

1 Introduction

Novel view synthesis (NVS), or 3D scene reconstruction, aims to synthesize im-
ages of a 3D scene from arbitrary viewing directions given multi-view images and
camera poses. NeRF [26] achieves remarkable NVS results by employing neural
network as an implicit volumetric representation, which maps 3D positions and
viewing directions to view-dependent colors and occupancy. Due to its flexibility,
numerous follow-up extensions, applications, and improvements had been made
on top of NeRF. While current state-of-the-art NeRF-based methods can accu-
rately synthesize geometry and appearance of a scene, high-resolution novel view
synthesis (HRNVS) poses a great challenge to them, where high-resolution (HR)
novel views are rendered by radiance fields constructed from low-resolution (LR)
training views. Since LR training views lack details of a scene, the rendered HR
novel views are blurry and noisy.
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Fig. 1: Given a radiance field reconstructed from low-resolution (LR) training views,
we perform radiance field super-resolution, leading to cleaner details in rendered views
of high-resolution (HR).

On the other hand, single-image super-resolution (SISR) aims to synthesize
an HR image from its LR counterpart. Different from mathematical up-sampling
methods, e.g., bilinear interpolation, SISR methods [9, 17, 20, 21, 24, 35, 43] inte-
grate deep learning models to enrich details and textures that are missed in LR
images. Recently, generative-based methods [19, 34] shows exciting results with
the advent of diffusion models.

A straightforward way of solving the above-mentioned quality issue of HRNVS
is to directly apply SISR methods on the rendered views. However, applying
SISR on each view independently will cause multi-view inconsistency, i.e., the
geometry or appearance of objects isn’t consistent among the multiple rendered
views. [33] first proposes NeRF-SR for super-resolution (SR) of neural radiance
field. Given a set of LR training views and 1 HR reference view of the same
scene, NeRF-SR refines the rendered HR view through super-sampling and a
patch-based refinement module. Although it shows satisfying results, requiring
an HR reference view for every scene is not practical. With similar ideas, Super-
NeRF [10] and CROP [39] propose to employ an SR module to guide the HR
renderings of NeRF, and rendered novel views can be recycled to guide the SR
module, making its SR outputs view-consistent. However, a lengthy optimization
is required for every scene, or the upscaling factor of SR is fixed, reducing the
flexibility. A pre-print [1] proposes to decompose a neural radiance field to tri-
plane [6], and applies a pre-trained SISR model to the 2D feature planes. While
this design improves the generalizability of SR module, i.e., a trained or fine-
tuned SR module in a scene can be directly applied to another scene, applying
SR on tri-plane independently causes inconsistency between the planes.
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In this work, we propose arbitray-scale super-resolution NeRF (ASSR-NeRF)
for super-resolution novel view synthesis (SRNVS) without the above-mentioned
issues. While HRNVS, performed by common NeRF-based models, only raise the
resolution of rendered views without adding more details, SRNVS aims to en-
rich the details and textures in novel views and remains multi-view consistency.
ASSR-NeRF consists of two main parts: a voxel-based distilled feature field re-
constructed from LR views and an attention-based VoxelGridSR model that will
directly super-resolve the radiance field. Inspired by [30,40,41], we first construct
a distilled feature field to represent a scene with explicit voxel grids. To let Voxel-
GridSR perform attention on meaningful features, feature distillation is deployed
to embed extracted features of 2D training views into 3D voxel grids. Since our
SR is performed in 3D space, there won’t be multi-view inconsistency. The design
of VoxelGridSR is inspired by LIIF [8], which treats SR as a mapping problem
between coordinates and the corresponding RGB values. Given the coordinate
of a queried point, VoxelGridSR performs density-distance-aware attention on
distilled features queried from its local region and outputs a refined feature
representing the queried point. Since the coordinate in 3D space is continuous,
VoxelGridSR is capable of optimizing SR at arbitrary scale. In addition, since
VoxelGridSR is generalizable, it serves as an off-the-shelf method that can di-
rectly apply to any reconstructed feature field of unseen scene for SRNVS.

In summary, our key contributions of our work are as follows:

– We propose a novel framework, ASSR-NeRF, for super-resolution novel view
synthesis (SRNVS) of radiance field.

– We distilled knowledge of low-level 2D SR priors from pre-trained feature
extractor into radiance field to benefit SR in 3D space

– We design VoxelGridSR model to refine the optimized volume for SRNVS
with richer textures and details.

– We train our VoxelGridSR to be generalizable so we can directly refine the
radiance field of unseen scenes trained with LR views.

2 Related Work

2.1 Image Super-Resolution

Image super-resolution (SR) aims to restore a high-resolution (HR) image from
its low-resolution (LR) counterpart. Early image SR methods [9,17,21,43] adopt
a deep convolutional neural network (CNN) to improve performance. After the
advent of the attention mechanism, methods such as SwinIR [20] and ESRT [24]
achieve competitive performance using a transformer-based architecture. To fur-
ther enrich details in SR results, GAN-based and diffusion based methods [19,
34, 35] generate finer details as well as rich textures through adversarial train-
ing and powerful diffusion models respectively. Although excelling in image SR
tasks, most methods can only perform SR on one fixed scale, failing to fit in real-
world scenarios where display devices come in different resolutions. To perform
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arbitrary-scale super-resolution (ASSR), one could first properly upscale the in-
put image, then apply existing image SR methods. However, this approach is
time-consuming and would lead to unsatisfied results when the upscaling factor
is too large. Recently, several methods [4,8, 12,18,36,37] are proposed to tackle
ASSR with a single model. LIIF [8] maps arbitrary coordinates to RGB colors
with an MLP, taking encoded image latent as input. With the same idea as LIIF,
CiaoSR [4] further applies attention mechanisms for an enlarged receptive field
and ensemble of local predictions.

2.2 Neural Radiance Fields

NeRF [26] has emerged as a prominent method for novel view synthesis (NVS),
showcasing remarkable results with several input views and known camera poses.
Specifically, NeRF encodes appearance and geometry of a 3D scene into a multi-
layer perceptron (MLP), which takes 3D positions and viewing directions as
input and predicts corresponding colors and densities. Volume rendering tech-
niques then accumulate the queried properties along a camera ray to formu-
late the color of a pixel. Many follow-ups extend this idea to different settings
and scenarios. Some methods dramatically improve training or rendering effi-
ciency with explicit structures. DVGO and Plenoxel [30, 40] employ voxel grids
as explicit scene representations, leading to fast convergence. TensoRF [7] repre-
sents a scene with a tri-plane structure, greatly reducing both training time and
memory usage. On the other hand, some methods focus on rendering quality.
Mip-NeRF [2] leverages mipmapping to achieve anti-aliasing when rendering at
different resolutions, and Zip-NeRF [3] further integrates grid-based represen-
tations, inspired by Instant-ngp [27], to enable both faster reconstruction and
anti-aliased rendering, achieving state-of-the-art performance of NVS.

2.3 Super-Resolution of Neural Radiance Field

Since NeRF [26] learns a continuous volumetric representation for NVS, it can
directly render novel views at arbitrary resolution. However, the rendering pro-
cedure adopted by NeRF samples a scene with a single ray per pixel, therefore
producing renderings with aliasing, blurs or artifacts when training and render-
ing views vary in resolutions. Supersampling, which samples multiple rays per
pixel, is an effective solution, but it leads to heavy computational burden for
MLP queries. Applying existent image SR methods to rendered novel views is
another straightforward approach. Nevertheless, super-resolving each view inde-
pendently would cause multi-view inconsistency, i.e., geometry of an object in
different views varies. Several methods [2, 3, 11] are proposed to mitigate this
quality issue, but they only “preserve” details, failing to “enrich” details that are
missed in LR training views. For example, given LR training views of an antique
vase, Mip-NeRF [2] can generate anti-aliased HR novel views but fail to restore
finer patterns on the vase. NeRF-SR [33] first proposes a module to refine details
for rendered HR novel views with one HR reference view of the same scene. Fol-
lowing the same idea, RefSR-NeRF [13] performs reference-based SR and reaches
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massive speedup. [39] further weakens the assumption that there’s always an
HR reference image for each scene, proposing to super-resolve novel views with
only LR training views. While these methods show impressive results, the SR
modules are all trained with a fixed up-scaling factor or a per-scene optimization
is required.

3 Preliminaries

NeRF [26] performs 3D scene reconstruction by encoding the geometry and oc-
cupancy of a scene into a multi-layer perceptron (MLP). The MLP maps a 3D
position x and a viewing-direction d to the corresponding view-dependent color
c and density σ. NeRF marches ray to render the color Ĉ(r) of each ray r casting
through a pixel. Along each ray, K points are sampled to query the MLP for the
corresponding color ci and density σi, which is then blended by:

Ĉ(r) =
∑K

i=1
Ti αi ci , (1a)

Ti =
∏i−1

j=1
(1− αj) , (1b)

αi = 1− exp(−σi δi) , (1c)

where r are sampled rays; Ti is the accumulated transmittance; αi is the opacity;
(Tiαi) represents the probability of termination at point i; δi is the distance to
adjacent points. NeRF model can then be trained with a photometric loss:

Lphoto =
∑

r∈R
∥C(r)− Ĉ(r)∥22 . (2)

While NeRF shows appealing performance on novel view synthesis, it strug-
gles with lengthy training and rendering time. Subsequent works [7,27,30,40] im-
prove training efficiency by replacing the MLP with grid-based representations.
We build our super-resolution algorithm based on DVGO [30], where modalities
of interest, e.g., density, color, of a 3D position are explicitly stored as voxel
features and can be queried via trilinear interpolation:

interp(x, V ) : (R3,RC×Nx×Ny×Nz ) → RC (3)

where V represents the voxel grid, x is the 3D position, C is the dimension of the
modality, and Nx, Ny, Nz represents the 3 dimensions of the grid respectively.
We use a density grid for geometry and a feature grid for appearance. A shallow
MLP network, dubbed RGBNet, is additionally employed to map the queried
voxel feature and the viewing-direction to view-dependent color.

4 Method

4.1 Overview

In this section we describe our method, dubbed ASSR-NeRF, for arbitrary-
scale super-resolution NeRF. An overview of our approach is depicted in Fig. 2.
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Fig. 2: Overview of ASSR-NeRF: Given a query point x along a ray, view-
dependent distilled features and densities of its nearest neighbors are first sampled from
a distilled feature field. Then, VoxelGridSR module aggregates the queried modalities
and performs self-attention for refined feature and density. Finally, a pre-trained de-
coder maps the refined feature to RGB value c.

ASSR-NeRF mainly consists of two parts: (i) a voxel-based distilled feature field
and (ii) a generalizable VoxelGridSR module. The distillation ensure the latent
space alignment to facilitate multi-scene training and generalizability to novel
scenes. The VoxelGridSR learns to utilizes the distilled SR latent for radiance
field refinement. The following sections are organized as follows: we first describe
our distilled feature field in Sec. 4.2 and explain why it is crucial in our approach.
Then in Sec. 4.3, we introduce the generalizable VoxelGridSR module that serves
as the core of radiance field super-resolution. We finally illustrate the training
strategy for VoxelGridSR in Sec. 4.4.

4.2 Voxel-Based Distilled Feature Field

As shown in Fig. 2, given a query coordinate x ∈ R3, density σ and voxel fea-
ture f of each of x’s nearest neighbors are queried from voxel grids. The feature
and density voxel grids explicitly store appearance and occupancy information
respectively, and FeatureNet further maps a voxel feature f to a view-dependent
distilled feature fd for VoxelGridSR to perform self-attention. Without special
modifications, the features queried from the radiance field are nothing more
than high-dimensional colors, limiting the performance of self-attention by Vox-
elGridSR. Applying a 3D feature extractor to the voxel feature grid is a straight-
forward solution, but the insufficiency of training data for a 3D feature extractor
leads to poor overall performance. On the other hand, image data of large quan-
tity as well as pre-trained models can greatly benefit tasks in 3D. Inspired by
this observation, we propose distilled feature field for scene representation in
ASSR-NeRF that bridges the gap between 2D and 3D data through feature
distillation.



ASSR-NeRF 7

Fig. 3: Distilled feature field: In a student-teacher setting, features extracted from
training views are distilled into a 3D student network. The student network is trained
by minimizing the difference between rendered features and features from pre-trained
image feature extractor, in addition to rendered colors and ground-truth pixel colors.
FeatureNet turn voxel feature into view-dependent distilled features, and a pre-trained
decoder maps view-dependent features RGB color.

In recent years, several works of neural radiance field have introduced feature
distillation in their methods. [16, 32] add an additional branch to NeRF [26] to
learn the semantic features from DINO [5], and performs open-set semantic seg-
mentation of radiance fields with distilled semantic features on query points. [14]
embeds multi-scale CLIP [29] features to a radiance field and performs visual
grounding in 3D space. While all the above methods distilled high-level features,
we propose to distill the learning-based low-level features into our radiance field
as the SR priors since they represent vast information about textures and details
of scenes. Feature distillation is also a crucial to our work as it guarantees the gen-
eralizability of VoxelGridSR model. By distilling features from the same teacher
extractor into the radiance fields, feature voxel grids from different scenes can
have aligned same latent space, i.e., the distributions of queried features from
all radiance fields remain the same. In this way, VoxelGridSR can be trained
in a unified latent space shared across voxel grids from all scenes and achieve
generalizability.

We first follow the autoencoder training paradigm in [8] to train a residual
dense network (RDN) [44] as feature extractor FE and a decoder D. Then, we
follow a student-teacher setting to distill features into radiance field, as shown
in Fig. 3. The distilled feature field is based on voxel grids, so VoxelGridSR
module can directly perform super-resolution on scene representation, guaran-
teeing multi-view consistency of rendered novel views. Following [30, 40], we
employ two voxel grids: a density voxel grid Vd ∈ R1×Nx×Ny×Nz and a feature
voxel grid Vf ∈ RC×Nx×Ny×Nz , to explicitly represent geometry and appearance
of a 3D scene respectively, where C is the dimension of feature-space. Given a
query point xq, its density σq and voxel feature f ′

q are queried from the voxel
grids with trilinear interpolation, and FeatureNet further maps f ′

q and viewing
direction d to view-dependent features fq. In addition, D decodes fq to color c.



8 Huang et al.

The distilled feature field is trained by minimizing the difference between ren-
dered features F̂(r) and teacher’s extracted features F(r), as well as rendered
colors and ground-truth pixel colors. The total loss L then becomes the sum of
photometric loss Lphoto and feature distance loss Lfeat:

L = Lphoto + λLfeat, (4a)

Lphoto =
∑
r∈R

∥C(r)− Ĉ(r)∥22 , Ĉ(r) =

K∑
i=1

Ti αi D(fi) (4b)

Lfeat =
∑
r∈R

∥F(r)− F̂(r)∥22 , F̂(r) =

K∑
i=1

Ti αi fi (4c)

where λ is the weight of feature distance loss, and is set to 0.5 by default.
Following [16], we apply stop-gradient to density when rendering F̂(r) since
F(r) may not be multi-view consistent.

4.3 VoxelGridSR

We detail the architecture of VoxelGridSR for refining the radiance field. Inspired
by ASSR methods [4, 8], we design our VoxelGridSR as a local 3D implicit
function that maps a 3D coordinate and its nearby voxel features to a refined
feature for the later color decoding. To this end, we introduce a Density-Distance-
Aware Attention for the 3D refining procedure. Given a query point xq, we
trilinear interpolate the corresponding distilled feature fq (Sec. 4.2) to produce
the attention query. We gather the contextual information from the eight nearest
neighbor grid point positions {xi}8i=1, each of which comprises its distilled feature
fi, volume density σi, and the offset to the query si = xi − xq. The query, key,
and value in attention operation can then be defined as:

Q = MLPq (fq)

Ki = MLPk ([fi; si;σi])

Vi = MLPv ([fi; si;σi])

, (5)

where fi, si and σi are concatenated before the MLPs, which then forms the key
matrix K ∈ R8×DK and the value V ∈ R8×DK matrices. Attention can then be
performed by scaled dot-product attention:

f (refine)
q = softmax

(
Q ·K⊺

√
DK

)
V (6)

where DK is the dimension of voxel feature. The Density-Distance-Aware Atten-
tion allow the VoxelGridSR to take the feature relevancy and the local spatial
relationship into consideration. Density information is also beneficial because
it helps differentiate interfaces, e.g ., objects and air. The distilled feature from
Sec. 4.2 enables VoxelGridSR to utilize the SR prior to enhance the textures and
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Fig. 4: Multi-scene training for VoxelGridSR: We train the generalizable Voxel-
GridSR module with N distilled feature fields that are reconstructed from LR training
views as input and take HR training views as well as feature maps as ground-truth. In
every iteration of training, a feature field of scene i ∈ N is randomly selected. Then,
VoxelGridSR maps fq to f

(refine)
q and c, and is updated by Lphoto and Lfeat.

details of the scene. Additionally, we also refine the geometry by aggregating the
grid point densities with the attention weights:

σq = softmax

(
Q ·K⊺

√
DK

)
· [σ1, · · · , σ8]

⊺ (7)

4.4 Multi-Scene Training for VoxelGridSR

Training VoxelGridSR on a single scene is less useful. As the distilled 3D feature
is aligned to the SR latent space of the 2D teacher, we train VoxelGridSR on mul-
tiple scenes for generalizability. Once trained, the VoxelGridSR module can serve
as an off-the-shelf enhancer to any distilled feature field under the same latent
space. Fig. 4 depicts the multi-scene training procedure of VoxelGridSR. We first
pre-trained N scenes with LR views and distilled feature fields. Subsequently,
during each iteration of the cross-scene training, a feature field of scene i ∈ N is
randomly selected and refined by VoxelGridSR through Density-Distance-Aware
Attention. We then can minimize the photometric loss Lphoto between the ren-
dered SR view and the ground-truth HR view. Feature matching loss Lfeat is
also applied to ensure the latent space to remain consistent.
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5 Experiments

5.1 Implementation Details

We impelment ASSR-NeRF with PyTorch [28]. To sample all the densities, fea-
tures and relative distances of nearest neighbors efficiently given a 3D position,
we design custom CUDA extensions. We set an expected number of voxels 2563

for both density and feature voxel grids. FeatureNet in our distilled feature field
is based on RDN [44], and the pre-trained decoder consists of 5 MLP layers
with dimensions of 256. FeatureNet and decoder are trained together in an au-
toencoder paradigm on DIV2K [31] dataset. To train VoxelGridSR, we take the
BlendedMVS [38] dataset at resolution 768 × 576 as HR ground-truth training
views and downsample with a factor ×4 to generate corresponding LR training
views. Distilled feature field of every scene is trained for 20k iterations and a
batchsize 4096. We first reconstructed distilled feature fields of 40 scenes from
BlendedMVS. After reconstructing distilled feature fields of 40 scenes, we train
the VoxelGridSR module with the distilled feature fields for 240K and a batch-
size 2048.

5.2 Comparisons and Discussions

We compare ASSR-NeRF and other state-of-the-art NeRF-based NVS meth-
ods [3, 30] with a few different settings. Among them, DVGO [30] serves as a
baseline since its architecture, consisting voxel grids and shallow MLP layers, is
similar to us. Zip-NeRF [3] is optimized for anti-aliasing so that their rendered
novel views remain clear with large difference in training and testing resolutions.
We also compare our method with image SR methods [20, 34] and a radiance
field SR method [39].

NeRF-based NVS methods In this experiment, we compare ASSR-NeRF
with state-of-the-art NeRF-based methods for high-resolution novel view syn-
thesis (HRNVS). For every scene, we train a distilled feature field with LR
training views, and directly apply pre-trained VoxelGridSR on the distilled fea-
ture field to perform super-resolution novel view synthesis (SRNVS). We also
train other methods with LR training views and perform HRNVS. We compare
all the methods on two datasets, Synthetic-NeRF [26] and BlendedMVS [38] with
three different scales. Note that there is no overlapping between scenes used to
train VoxelGridSR and scenes used for testing in all experiments. In Tab. 1,
we show the result in PSNR, SSIM and LPIPS. We can see that ASSR-NeRF
surpasses all the other methods at every scale. Although Zip-NeRF gains some
advantage when the scale is low, its performance declines greatly when the scale
increases, revealing common NeRF-based methods’ shortcomings. This result
matches our initial observation that NVS methods trained on LR training views
have non-ideal performance when rendering HR novel views. We also show the
qualitative results in Fig. 4. While having cleaner rendered views, ASSR-NeRF
can also generate finer details as well as textures. For example, ASSR-NeRF
generates cleaner patterns on figure’s clothes and sharper edge of microphone.



ASSR-NeRF 11

Table 1: Quantitative results on Synthetic-NeRF [26] and BlendedMVS [38]: We
compare ASSR-NeRF with other NeRF-based NVS methods. All methods are trained
with LR training views of a downsampling factor x4, and render at three different
resolutions. ASSR-NeRF achieves the best performance in all resolutions and datasets.

x1.6 x2 x4
Synthetic-NeRF PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

DVGO [30] 29.89 0.945 0.061 28.80 0.933 0.077 27.33 0.910 0.115
TensoRF [7] 31.36 0.950 0.060 29.96 0.947 0.078 28.07 0.916 0.118

Instant-ngp [27] 28.55 0.933 0.095 28.23 0.926 0.101 27.26 0.902 0.128
Zip-NeRF [3] 30.95 0.962 0.041 29.56 0.951 0.057 27.73 0.923 0.102

ASSR-NeRF (ours) 31.09 0.961 0.048 30.57 0.954 0.057 29.02 0.932 0.093

x2 x2.5 x4
BlendedMVS PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
DVGO [30] 26.88 0.909 0.111 26.96 0.902 0.124 24.74 0.845 0.187
TensoRF [7] 27.72 0.921 0.114 27.78 0.912 0.131 25.35 0.852 0.182

Instant-ngp [27] 26.63 0.894 0.150 26.64 0.882 0.166 25.14 0.835 0.188
Zip-NeRF [3] 28.48 0.929 0.148 28.41 0.918 0.173 25.97 0.854 0.237

ASSR-NeRF (ours) 28.52 0.931 0.080 28.56 0.926 0.093 26.38 0.873 0.148

Table 2: Quantitative results on BlendedMVS [38]: We compare our method with
hyrbrid approaches where LR rendered views are super-resolved by image SR methods
with factor x4 and a NeRF SR method that shares the same setting with us.

PSNR ↑ SSIM ↑ LPIPS ↓
Zip-NeRF [3] + SwinIR [20] 26.21 0.866 0.159

Zip-NeRF [3] + StableSR [34] 24.56 0.839 0.169
CROP [39] 26.25 0.879 0.145

ASSR-NeRF (ours) 26.38 0.873 0.148

Super-resolution methods In this experiment, we compare our method with
image SR methods as well as radiance field SR methods. Following the training
setting from Sec. 5.2, we train Zip-NeRF [3] with LR training views. Then, we
render LR novel view at the same scale, and super-resolve the novel views with
state-of-the-art image SR methods [20, 34]. SwinIR [20] integrates Swin Trans-
former [23] into its architecture for better feature extraction on input images.
StableSR [34] utilized pre-trained diffusion models to generate finer details and
textures on SR results. Besides using image SR on rendered novel views, we
compare with a radiance field SR method [39] that shares a similar setting with
us. CROP [39] first super-resolves LR training views with pre-trained image SR
methods, and uses the super-resolved views to train a NeRF-based NVS model.
Unlike other radiance field SR methods [13, 33] that requires an HR reference
image of the same scene, CROP only needs LR training views when testing.
Our method differs from CROP that our VoxelGridSR module is optimized at
arbitrary scale while CROP is trained at a fixed upscaling factor. All methods
perform HRNVS with a upscaling factor ×4. In Tab. 2, we show the quantati-
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Fig. 5: Qualitative results on Synthetic-NeRF [42] and BlendedMVS [38]: All other
baselines are first reconstructed from LR training views, then perform HRNVS. For
ASSR-NeRF, pre-trained VoxelGridSR model is applied to achieve SRNVS. The results
show that ASSR-NeRF generates cleaner edges as well as richer details than other
baselines.

tive results on BlendedMVS [38]. While reaching comparable SSIM and LPIPS
scores as CROP, our method outperforms in terms of PSNR.
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Fig. 6: Qualitative results of view consistency. Applying image SR method, e.g., Sta-
bleSR [34] to rendered LR novel views from Zip-NeRF [3] leads to sharp but distorted
results, and loses multi-view consistency. On the other hand, our method generates
clean HR novel views with consistent details. We encourage readers to view our sup-
plementary videos where our method achieves better multi-view consistency than other
baselines.

Multi-View Consistency In this section, we discuss the multi-view consis-
tency issue. In Sec. 5.2, we conduct the experiments of super-resolving rendered
LR novel view with image SR methods. Although this approach can also gener-
ate cleaner HR novel views with finer details, multi-view inconsistency remains
as a serious problem. As shown in Fig. 6, super-resolving rendered LR novel
views with image SR methods lead to distorted geometry and textures across
different views. On the other hand, our method generate consistent views from
different camera poses. This advantage of our method is contributed from the
design of ASSR-NeRF’s SR module. Instead of applying SR on 2D feature maps,
VoxelGridSR directly applies SR on 3D volume, i.e., the distilled feature fields,
guaranteeing consistency of geometry and appearance across every viewing di-
rection.

5.3 Ablation Studies

We provide ablation studies to analyze our proposed method in this section. We
analyze the design of VoxelGridSR module to verify the effectiveness of Density-
Distance-Aware Attention.

Analysis of VoxelGridSR We follow the same training setting described in
Sec. 5.1 and train different variants of VoxelGridSR. Tab. 3 shows the variants’
performance of SRNVS on BlendedMVS dataset with an upscaling factor ×4.
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Table 3: Ablation study on VoxelGridSR module. We verify the effectiveness of
density-aware and distance-aware attention on voxel grids. While considering both
denstiy and relative distance of nearest neighbors improves performance, we highlight
that density information is more crucial to SR in 3D space.

Model Feature-aware Density-aware Distance-aware PSNR ↑ SSIM ↑ LPIPS ↓
A ✓ ✓ ✓ 26.38 0.873 0.148
B ✓ ✓ 26.20 0.873 0.157
C ✓ ✓ 26.14 0.872 0.147

Density-aware means whether to consider densities of nearest neighbors when
performing self-attention, and Distance-aware indicates whether the relative dis-
tance to each nearest neighbor is considered. The metrics show that both density
and relative distance can benefit the performance of self-attention. Interestingly,
we find that Distance-aware brings more improvements for 3D SR. This is rea-
sonable, since density contains information about the local geometry and SR in
3D space can thus lead to sharper edges of objects in rendered views.

5.4 Discussions and limitations

The experiments show that our framework achieves competitive performance
in SRNVS. However, one of limitations is the increased rendering time since
VoxelGridSR performs self-attention on every sampled point. Reducing rendering
time while keeping the same quality will be our future research direction. We
also notice that currently there isn’t an effective benchmark to assess multi-view
consistency, and we can only compare our methods with others through frame-
wise metrics such as PSNR and qualitative presentations. We think video quality
assessment (VQA) might be an interesting research direction that can serve as
an assessment metric for multi-view consistency.

6 Conclusions

In this work, we propose ASSR-NeRF, a novel framework for radiance field
super-resolution. ASSR-NeRF consists of a distilled feature field for scene repre-
sentation and a generalizable VoxelGridSR module for raidance field SR. Once
a distilled feature field is reconstructed from any set of LR training views, a
pre-trained generalizable VoxelGridSR module can be directly applied for super-
resolution novel view synthesis (SRNVS). Our approach can greatly benefit real-
world applications. For example, low-resolution training views captured by cheap
devices can be efficiently utilized for high-quality novel view synthesis, reducing
cost and time required by views capturing. Experiments on various benchmarks
as well as qualitative comparisons show that our framework is strongly effective
in improving rendering quality.
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Supplementary Material

1 Additional Implementation Details

1.1 Feature extractor and pre-trained decoder

As described in Sec.4 of the main paper, we use a pre-trained feature extractor
FE to provide SR priors to be distilled into radiance field and a pre-trained
decoder D to map voxel features to distilled features. We follow the training
procedure from [8] to train FE and D together. Under an autoencoder paradigm,
an input image I of shape H×W×3 is first encoded into a pixel-aligned feature
map F of shape H×W×C by FE, where H and W is the height and width of the
input image and C is the dimension of the feature. The decoder D then maps
pixel-aligned feature to RGB value. The models can then be trained to minimize
the L1 loss between the decoder output and the input image I. We choose
RDN [44] as FE for its good trade-off of training efficiency and performance
compared to other architectures and a decoder D of 5 MLP layers with ReLU
activation function.

1.2 Preprocessing of dataset

Fig. 1: Pipeline for dataset preprocessing: Given a raw training view, we first
use Gounding DINO [22] to locate the target obejct, then utilize a segment anything
model (SAM) [15] to segment and generate training view with object mask.

We train the generalizable VoxelGridSR model for all experiments with Blend-
edMVS [38] dataset, and test our method on a subset of 5 scenes, following all
previous works. Before training VoxelGridSR model, we first reconstructed 40
radiance fields of scenes from BlendedMVS. We found that BlendedMVS mostly
contain scenes of complex objects as well as complicated backgrounds, which
may affect the quality of the reconstructed radiance field. To ensure that Voxel-
GridSR is trained with well-reconstructed radiance fields, we design a preprocess-
ing pipeline to refine BlendedMVS data. Given a raw training view of scene s, we
first use Grounding DINO [22] to tag the bounding box of target object. Then, a
segment anything model (SAM) [15] is used to segment the object and generate
training view with object mask. The processed images and camera poses are
then used to reconstruct radiance fields for training VoxelGridSR. Pre-trained
Grounding DINO and SAM are directly utilized for the procedure.



Supplementary Material for ASSR-NeRF 19

2 Multi-View Consistency

Fig. 2: Comparison of multi-view consistency: Super-resolving LR novel views
from Zip-NeRF [3] by StableSR [34] leads to serious inconsistency across views from
different camera poses. ASSR-NeRF can render HR novel views of consistent geometry
and appearance. We encourage readers to visit our video showing the consistency issue
at https://drive.google.com/file/d/1h8WjmN7r1R79Cd4Q-dRLgbhToMZNR3pz/view.

We provide additional qualitative comparisons about multi-view consistency
in Fig. 2. While super-resolving rendered LR novel views from Zip-NeRF [3]
leads to sharper results, it results in multi-view inconsistency, i.e., geometry and
appearance across views from adjacent camera poses varies a lot. On the other
hand, our method performs super-resolution novel view synthesis (SRNVS) with
great consistency.

3 Analysis of Feature Distillation

In Sec.4.2. of the main paper, we mention that feature voxel grids from different
scenes can have aligned same latent space by distilling features from the same
teacher extractor into the radiance fields, VoxelGridSR can thus be trained in a
unified latent space shared across voxel grids from all scenes and achieve general-
izability. Fig. 3 shows the importance of distilled feature fields to training a gen-
eralizable VoxelGridSR. Trained with distilled feature fields, VoxelGridSR can
reach generalizability and perform SR successfully on unseen scenes, as shown in
the upper row. Without feature distillation, VoxelGridSR is trained with voxel-
based radiance fields of diverse voxel feature distribution, and eventually fails to
gain SR ability, as shown in the lower row of Fig. 3.

https://drive.google.com/file/d/1h8WjmN7r1R79Cd4Q-dRLgbhToMZNR3pz/view
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Fig. 3: Effectiveness of training VoxelGridSR with distilled feature fields:
Shown in the upper row, VoxelGridSR model trained with distilled feature fields can
achieve generalizability and perform SR on radiance fields of unseen scenes. Trained
with radiance fields without feature distillation, VoxelGridSR fails to super-resolve and
leads to corrupted novel views with incorrect colors, as shown in the lower row.

4 Additional Results

4.1 Bounded scenes

In Sec.5.2. of the main paper, we provide qualitative comparison with DVGO [30]
and Zip-NeRF [3]. Here we provide additional qualitative results from more
models, including TensoRF [7] and Instant-ngp [27], on Synthetic-NeRF [26]
and BlendedMVS [38]. Fig. 4 shows that our method can render high-resolution
novel views with richer and cleaner details.

4.2 Forward-facing scenes

In main paper, we conduct experiments on datasets of bounded scenes. These
scenes are object-centric and have simple backgrounds [26, 38]. In this section,
we provide results on LLFF [25], a dataset containing forward-facing scenes with
complex objects and backgrounds. Following the same experiment settings from
Sec.5.2. of the main paper, we compare our method with Zip-NeRF on LLFF. As
shown in Tab. 1, ASSR-NeRF outperforms Zip-NeRF with high upscaling factor
(x4). Fig. 5 also shows that our method can effectively improve the geometry
and achieve cleaner appearances even when reconstructing scenes with complex
backgrounds and objects.
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Fig. 4: Additional qualitative results: All other baselines are first reconstructed from
LR training views, then perform HRNVS. For ASSR-NeRF, pre-trained VoxelGridSR
model is applied to achieve SRNVS.

x4 PSNR↑ SSIM↑ LPIPS↓

Zip-NeRF 23.351 0.690 0.419
Ours(ASSR-NeRF) 23.801 0.725 0.361

Table 1: Quantitative results on LLFF. The experiment was trained on 252x189
image resolutions and tested on 1008x756.
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Fig. 5: Qualitative results on LLFF. Our method renders more realistic HR images
in scenes with complex backgrounds.
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