
Consensus-Based Fault-Tolerant Platooning for

Connected and Autonomous Vehicles

Tzu-Yen Tseng1, Ding-Jiun Huang1, Jia-You Lin1, Po-Jui Chang1, Chung-Wei Lin1, Changliu Liu2

1National Taiwan University, 2Carnegie Mellon University

Abstract—Platooning is a representative application of con-
nected and autonomous vehicles. The information exchanged
between connected functions and the precise control of au-
tonomous functions provide great safety and traffic capacity. In
this paper, we develop an advanced consensus-based approach
for platooning. By applying consensus-based fault detection and
adaptive gains to controllers, we can detect faulty position
and speed information from vehicles and reinstate the normal
behavior of the platooning. Experimental results demonstrate
that the developed approach outperforms the state-of-the-art
approaches and achieves small steady state errors and small
settling times under scenarios with faults.

Index Terms—Autonomous vehicles, connected vehicles, con-
sensus, fault-tolerance, platooning.

I. INTRODUCTION

Platooning is a representative application of connected and

autonomous vehicles. Usually supported by the Cooperative

Adaptive Cruise Control (CACC) on each vehicle, the infor-

mation exchanged between vehicles and the precise control

provide great safety and traffic capacity. As the technology

of connectivity and autonomy advanced in recent years, pla-

tooning has been studied from many different perspectives [1],

[2], [3], [4], [5]. Especially, Santini et al. [1] proposed a state-

of-the-art consensus-based approach for platooning. The main

goal of the consensus-based approach is to construct a control

system that establishes consensus between vehicles and forms

the platoon. Although the proposed approach introduces the

concept of consensus into platooning, it does not exploit the

full strength of consensus to protect platooning against faulty

information (the details are explained in Section IV-A). As

a result, a platoon may converge to a wrong state if some

vehicles send faulty messages, no matter they are general

network faults or malicious attacks. To address this problem,

Petrillo et al. [2] proposed a collective voting procedure to de-

tect faulty position information. Although the approach in [2]

can address the issue of faulty position information, it still has

some limitations, including its settling time, communication

assumption, and faulty speed information.

In this paper, we develop an advanced consensus-based

approach consisting of faulty-vehicle detection and controller-

gain adjustment. The faulty-vehicle detection analyzes the

messages from vehicles and detects faulty position informa-

tion from vehicles; the controller-gain adjustment eliminates

This work is partially supported by Ministry of Education (MOE) in Taiwan
under Grant Number NTU-111V1901-5, National Science and Technology
Council (NSTC) in Taiwan under Grant Number NSTC-112-2636-E-002-010,
and Qualcomm.

the impacts of faulty position information and reinstates the

normal behavior of the platooning. We then develop a two-

phase mechanism to detect faulty speed information from

the leading vehicle and also reinstate the normal behavior

of the platooning. By integrating CUBA [6], we can further

relax the assumption that each vehicle in the platoon can

receive messages from all other vehicles in the platoon. The

features of considering faulty speed information and relaxing

the communication assumption are not covered in [1], [2].

Experimental results demonstrate that the developed approach

outperforms the existing approaches [1], [2] and achieves small

steady state errors and small settling times under scenarios

with faults.

The rest of this paper is organized as follows: Section II re-

views related work. Section III presents the system model and

the problem formulation. Section IV describes the developed

consensus-based fault-tolerant controller which detects faulty

position information and reinstates the platooning. Section V

describes the two-phase mechanism which detects faulty speed

information and reinstates the platooning. Section VI provides

experimental results, and Section VII concludes this paper.

II. RELATED WORK

Collaborative Adaptive Cruise Control (CACC) is an emerg-

ing system for platooning connected and autonomous vehicles.

However, CACC and platooning algorithms are vulnerable

to external malicious attacks, causing safety and security

threats to connected and autonomous vehicles. Van Nunen et

al. [7] focused on sensor faults and proposed an algorithm to

calculate safe distances and guarantee the safety for CACC.

Han et al. [8] came up with an admission protocol for pla-

tooning against impersonation attacks. Ucar et al. [9] proposed

a security protocol for ensuring platooning stability under

jamming attacks. Santhosh and Sankara [10] modeled Sybil

attacks and provided a defense mechanism against the attacks.

Benchi et al. [11] provided an approach reducing the influence

of false-position attacks, and Taylor et al. [12] showed the

impact of false-data-injection attacks. Some other work has

been done to defend the attacks through intrusion detection.

Jagielski et al. [13] considered attacks that modify the position,

speed, or acceleration information in messages and proposed

a learning-based approach for intrusion detection. Alotibi and

Abdelhakim [14] proposed another intrusion detection ap-

proach fusing the information of the leading vehicle from other

vehicles and infrastructure and precluding the deviated data to

20
23

 IE
EE

 In
te

lli
ge

nt
 V

eh
ic

le
s S

ym
po

si
um

 (I
V

) |
 9

79
-8

-3
50

3-
46

91
-6

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
D

O
I:

10
.1

10
9/

IV
55

15
2.

20
23

.1
01

86
66

7

Authorized licensed use limited to: National Taiwan University. Downloaded on November 26,2023 at 13:34:33 UTC from IEEE Xplore. Restrictions apply.

TABLE I
NOTATION THROUGHOUT THIS PAPER.

Index i, j the index of a vehicle
t the time or the time step

Set I∗ the index set of faulty vehicles

Element κi the i-th vehicle in the platoon (from 0)
Ci the controller of κi

Given N the number of vehicles in the platoon
Parameter Xi the initial position of κi

Vi the initial speed of κi

Ai the initial acceleration of κi

U+

i the maximum acceleration of κi

U−

i the maximum deceleration of κi

Di the safety distance between κi−1 and κi

Θ the threshold for settling time
Fi the difference from the true position of κi

E the difference from the true speed of κ0

M the parameter in CUBA [6]

Decision gi(t) the controller gain of κi toward
Variable the speed reference from κ0 at t

gi,j(t) the controller gain of κi toward
the position reference from κj at t

Dependent xi(t) the (true) position of κi at t
Variable vi(t) the (true) speed of κi at t

ai(t) the (true) acceleration of κi at t
x′

i(t) the (received) position of κi at t
v′i(t) the (received) speed of κi at t
a′i(t) the (received) acceleration of κi at t
ui(t) the controlled acceleration from Ci at t
si the settling time of κi

δxi(t) the position error of κi at t
δvi(t) the speed error of κi at t

detect attacks in CACC. Recently, Taylor et al. [15] listed

multiple kinds of attacks and pointed out open challenges.

On the other hand, consensus algorithms have been well-

studied. Lamport [16] proposed the Paxos algorithm, which

can be implemented for a fault-tolerant distributed system.

Cavin et al. [17] reformed the traditional consensus algorithms

to handle the dynamic in mobile ad hoc networks. Ongaro and

Ousterhout [18] developed the Raft algorithm, which simpli-

fied and optimized the design of Paxos algorithm. Benchi et

al. [19] presented a new consensus algorithm that can be

applied to opportunistic networks.

Some research concentrated on the automotive applications

of consensus algorithms. Zhang et al. [20] proposed a con-

sensus tracking algorithm for a multi-vehicle system with

a dynamic topology. Petit and Mammeri [21] presented a

consensus application in vehicular ad hoc networks (VANET)

with dynamic inputs according to the uncertainty of surround-

ing environments. Wegner et al. [22] proposed a consensus

protocol for platooning, but the protocol purely considers high-

level value exchanges (without considering controllers).

III. SYSTEM MODEL AND PROBLEM FORMULATION

The notation throughout this paper is listed in Table I, and

the system model and problem formulation are provided in

this section.

Vehicle. There are N vehicles indexed from 0. All vehicles

are connected and autonomous, and they are on the same lane

to form a platoon. Each vehicle κi periodically broadcasts its

position, speed, acceleration, and other relevant information.

• The (true) position, speed, and acceleration of κi at time

t are xi(t), vi(t), and ai(t), respectively.

• The position, speed, and acceleration of κi at t, as

messages received by other vehicles, are x′

i(t), v
′

i(t), and

a′i(t), respectively, i.e., if there is no fault, x′

i(t) = xi(t),
v′i(t) = vi(t), and a′i(t) = ai(t).

• The initial position, speed, and acceleration of κi are Xi,

Vi, and Ai, respectively, i.e., xi(0) = Xi, vi(0) = Vi,

and ai(0) = Ai.

The system model in [1] assumes that each vehicle in the

platoon can receive messages from the leading vehicle κ0.

Here we also assume that each vehicle in the platoon can

receive messages from all other vehicles in the platoon. We

can also relax the assumption with the modified CUBA method

(which is described in Section IV-C).

Controller. The controller Ci of κi decides the acceleration

ui(t) of κi at t. For each activation period at t, Ci collects the

messages from other vehicles and computes ui(t), where the

computation involves the controller gains toward the messages

from other vehicles. Note that κi has its maximum acceleration

U+

i and its maximum deceleration U−

i . If the computed

acceleration is larger (smaller) than U+

i (U−

i), ui(t) will be

set to U+

i (U−

i).

Target States. The target state of κi includes the position

target state and the speed target state. The position target state

of κi (i ≥ 1) is the safety distance between κi−1 and κi,

denoted as Di, i.e.,

xi(t)− xi−1(t) = Di, (1)

and the speed target state of κi is the speed of κ0, i.e.,

vi(t) = v0(t). (2)

Settling Time. The settling time si of κi is the time for κi

to reach and stay within a threshold Θ of its final states (state

values), i.e.,

si =min







t | ∀t′ > t,

∣

∣

∣

∣

∣

∣

1−
xi(t

′)− xi−1(t
′)

lim
t′′→∞

(xi(t′′)− xi−1(t′′))

∣

∣

∣

∣

∣

∣

< Θ

∧

∣

∣

∣

∣

∣

∣

1−
vi(t

′)

lim
t′′→∞

vi(t′′)

∣

∣

∣

∣

∣

∣

< Θ







. (3)

The system settling time is the maximum settling time of all

vehicles. Some examples of Θ are 5%, 3%, and 1%. If Θ is

smaller, the settling time will become larger; if Θ is larger,

the settling time will become smaller.

State Errors and Steady State Errors. The state errors of

κi at t include the position-state error and the speed-state

error. The position-state error of κi at t is

δxi(t) = |xi(t)− xi−1(t)−Di| , (4)

and the speed-state error of κi at t is

δvi(t) = |vi(t)− v0(t)| . (5)

The steady state errors of κi are the corresponding state errors

of κi when t ≥ si.

Authorized licensed use limited to: National Taiwan University. Downloaded on November 26,2023 at 13:34:33 UTC from IEEE Xplore. Restrictions apply.

Fault Model. In this paper, we consider faulty positions and

a faulty speed. A faulty position of κi indicates

x′

i(t) = xi(t) + Fi, (6)

where Fi is the difference from the true value. A faulty speed

of κo indicates

v′0(t) = v0(t) + E, (7)

where E is the difference from the true value. We assume that

the index set of faulty vehicles I∗ is unknown (not given) in

advance. The faults, whether they are malicious or not, will

lead to steady state errors and impair system properties, e.g.,

safety (smaller gaps between vehicles) and efficiency (larger

gaps between vehicles).

Problem Formulation. Given the system model, decide

• The controller gain of κi toward the speed reference from

κ0 at t, gi(t), and

• The controller gain of κi toward the position reference

from κj at t, gi,j(t),

to minimize

• The average of steady state errors of all vehicles (primary

objective), and

• The system settling time (secondary objective).

IV. CONSENSUS-BASED FAULT-TOLERANT CONTROLLER

In this section, we first introduce the state-of-the-art ap-

proaches [1], [2] in detail (integrated with the notation of

this paper) and explain the motivations in Section IV-A.

We then describe the faulty-vehicle detection, the modified

CUBA method (also for the faulty-vehicle detection), and the

controller-gain adjustment in Sections IV-B, IV-C, and IV-D,

respectively.

A. Motivations

Santini et al. [1] proposed a consensus-based approach

for platooning. They observed that the previous research

lacks the consideration of changing communication delays

and thus proposed a controller which takes communication

delays into account. The leading vehicle κ0 is a reference for

platooning and is assumed globally reachable, meaning that

κ1, κ2, . . . , κN−1 can receive the information sent from κ0.

The objective of the controller Ci is to fix a desired safety

distance Di between κi−1 and κi and set the speed vi(t) to

approach v0(t) by computing

ui(t) = −gi(t)(vi(t)− v0(t))

−

N−1
∑

j=0

gi,j(t) · f(xi, xj , v0, τi,j , t), (8)

where

f(xi, xj , v0, τi,j , t) = xi(t)− xj(t− τi,j(t)) (9)

−τi,j(t)v0(t)− hi,jv0(t)− di,j ,

where τi,j(t) is the communication delay between κi and κj at

time t, hi,j is the constant time headway (i.e., a constant time

where each vehicle κi travels to maintain the desired following

distance to its front vehicle κi−1), and di,j is the summation

of the inter-vehicular spacing at standstill and the vehicle

length [1]. After formulating the problem, ui(t) is rewritten

with the terms of the state errors δxi(t) and δvi(t), recasting

the problem to be a closed-loop platooning dynamics. The

controller is theoretically proven to be asymptotically stable.

The controller gains gi(t) and gi,j(t) also guarantee string

stability if the communication delay has an upper bound.

The approach in [1] does not consider faulty messages (no

matter whether they are general network faults or malicious

attacks), i.e., Fi = 0 for each vehicle κi. The controller Ci
of the approach in [1] only considers the speed of κ0 and

the positions of κ0 and κi−1, which means that the positions

of other vehicles are not considered, i.e., the controller gain

gi,j(t) = 0 if j ̸= 0 and j ̸= i− 1. This setting is reasonable

when there is no faulty message because the speed of κ0 and

the positions of κ0 and κi−1 are the most relevant information

for Ci. However, when there are faulty messages, Ci which

relies on only a few specific vehicles may converge to a wrong

state. Also, because there is no faulty message, the controller

gain gi,j(t) is set to be constant in the approach in [1].

Following the approach in [1], Petrillo et al. [2] proposed

a collective voting procedure to detect vehicles with faulty

messages at each time step. Each vehicle κi compares the

distance to every considered vehicle κj with an average gap

value and takes κj as abnormal if the difference is larger than

a threshold. Although the strategy in [2] can address the issue

of faulty messages, the system settling time can be reduced.

Starting from the approaches [1], [2], we develop a more ad-

vanced approach with faulty-vehicle detection and controller-

gain adjustment. The major features are as follows:

• We consider faulty positions (as messages), i.e., Fi ̸= 0.

Then, we exploit the strength of consensus, consider the

positions of other vehicles, and further adaptively adjust

the controller gain gi,j(t), i.e., gi,j(t) is not necessarily

zero if j ̸= 0 and j ̸= i− 1, to eliminate the impacts on

the platoon from faulty positions. The above features are

not in [1].

• We further reduce the system settling time, compared

with the approach in [2].

• The system model in [1], [2] assumes that each vehicle

in the platoon can receive the messages from the leading

vehicle κ0. Although we also first assume that each

vehicle in the platoon can receive the messages from

all other vehicles in the platoon, we can also relax the

assumption with the modified CUBA method. The feature

is not covered in [1], [2].

• We also consider the faulty speed of the leading vehicle

κ0, which will be described in Section V. The feature is

not covered in [1], [2].

B. Faulty-Vehicle Detection

For κi to detect a faulty vehicle κj , the intu-

itive solution is to check the inconsistency of the true

dynamics xj(t), vj(t), aj(t) and the received dynamics

x′

j(t), v
′

j(t), a
′

j(t), as illustrated in Figure 1. However, given

Authorized licensed use limited to: National Taiwan University. Downloaded on November 26,2023 at 13:34:33 UTC from IEEE Xplore. Restrictions apply.

Vehicle Faulty Vehicle (True) Faulty Vehicle (Received)

Fig. 1. Faulty-vehicle detection.

that a vehicle can only know the dynamics of non-

adjacent vehicles through received messages (implying that

xj(t), vj(t), aj(t) are unknown to κi), the position-state error

of κj , observed by other vehicles, can be written as

x′

j(t)− x′

j−1(t)−Dj . (10)

If κj is not faulty, the position-state error of κj should

converge to zero, i.e.,

x′

j(t)− x′

j−1(t)−Dj −→ 0, (11)

when all vehicles become steady. However, if κj is faulty, the

position-state error of κj should converge to Fj , i.e.,

x′

j(t)− x′

j−1(t)−Dj −→ Fj , (12)

when all vehicles become steady. We would like to point

out that whether κj−1 is faulty or not does not change

Equations (11) and (12) because κj behaves according to

x′

j−1(t), not xj−1(t). Based on Equations (11) and (12), the

faulty-vehicle detection checks the position-state errors when

all vehicles become steady. If the gap between κj and κj−1

is Θ (the threshold in Equation (3)) larger than or smaller

than Dj , the faulty-vehicle detection decides that κj is a

faulty vehicle. Note that there is a case that κj and κj−1 are

both faulty with the same difference from the true positions,

and κj−1 is considered as a faulty one. In this case, κj and

κj−1 will no longer be considered with Equation (10), κj

and κ0 will be considered instead due to the controller-gain

adjustment (which is described in Section IV-D).

The faulty-vehicle detection will lead to the controller-

gain adjustment (which is described in Section IV-D). In

practice, when to trigger the detection is still an issue. If it

is triggered when all vehicles become steady, then we can

achieve high fault-tolerance, but the system settling time may

become much larger; if it is triggered too early, then the

dynamics of most vehicles may have not converged, and thus

many vehicles will be detected as faulty vehicles. To address

this issue, we also propose to trigger the detection and the

following adjustment when N
2

vehicles become steady, which

can improve (shorten) the system settling time. Here, N
2

can

be replaced by other ratios, but N
2

balances between settling

time and over-sensitivity and fits if there is an assumption

that N
2

vehicles are non-faulty. This fast fault-tolerant method

does not have any additional communication overhead as each

vehicle can decide the stability of each other vehicle by the

received information.

Note that, if the assumption that Dj is the same for each

vehicle is not held, we can assume that each vehicle knows

the safety distances for all vehicles in front of it, which

can be achieved by additional information exchanges between

vehicles and/or roadside units. Similarly, if the gap between κj

and κj−1 is Θ larger than or smaller than the safety distance,

κj is regarded as a faulty vehicle.

C. Modified CUBA Method for Faulty-Vehicle Detection

Here, we relax the assumption that each vehicle in the

platoon can receive the messages from all other vehicles in the

platoon. There are a consensus round and a suspect round in

CUBA [6]. We modify and use the suspect round of CUBA for

the problem. When the consensus round fails, a proposer starts

a suspect round for detecting faulty vehicles. In the suspect

round, it only requires at least one message to be received by

each vehicle.

We modify the suspect round of CUBA by splitting the

protocol into three stages:

• In the first stage, each vehicle κi sends its own position

and speed information to nearby 2M + 1 vehicles (i.e.,

from κi−2M−1 to κi+2M+1), where the parameter M is

set based on the network status and the distance between

the vehicles.

• In the second stage, we need to consider the cases that

the number of hops between two vehicles is larger than

2M + 1. For each κi that receives a message from κj ,

it sends the message to 2M +1 vehicles in the direction

away from κj . For example, when (M, i, j) = (1, 3, 4),
κ4 sends the message from κ3 to κ5, κ6, and κ7. Note that

if the total number of vehicles is fewer than 2M +3, the

protocol degenerates to the assumption that each vehicle

can receive the messages from all front vehicles.

• In the third stage, based on the messages received in the

second stage, each vehicle detects faulty vehicles with

Equations (11) and (12).

When the modified CUBA method detects faulty vehicles, it

executes the controller-gain adjustment in Section IV-D.

With the modifications, we can guarantee that the protocol

works if the number of faulty vehicles is fewer than or equal

to M (i.e., |I∗| ≤M). We can prove it by induction with the

following steps:

• Considering a vehicle κj and the following vehicles κj+k,

where k > 0. We know that κj+1, κj+2, . . . , κj+2M+1

can successfully receive the message from κj . We will

show that, for each k > 2M + 1, κj+k can also receive

the information of the message.

• When k = 2M + 2, κj+k can receive messages from

κj+1, κj+2, . . ., κj+k−1. Since |I∗| ≤M , κj+k receives

at least 2M + 1 −M = M + 1 messages with correct

information. Because M + 1 > M , which is the number

of vehicles that may be faulty, κj+k can correctly learn

the information from κj . Note that we do not assume that

κj+2M+2 is non-faulty. We only prove that κj+2M+2 can

learn the information from κj .

• When k > 2M+2, all non-faulty vehicles between κj and

κj+k−1 send the messages including the information from

κj . Following the same reason when k = 2M + 2, κj+k

can also correctly learn the information from κj because

the number of non-faulty vehicles among κj+k−2M−1,

κj+k−2M , . . ., κj+k−1 is at least M + 1.

Authorized licensed use limited to: National Taiwan University. Downloaded on November 26,2023 at 13:34:33 UTC from IEEE Xplore. Restrictions apply.

(a)
Vehicle Faulty Vehicle

0124 3

(b)
Vehicle Faulty Vehicle

0124 3

(c)
Vehicle Faulty Vehicle

0124 3

Fig. 2. Controller-gain adjustment.

By induction, we prove that all vehicles receive the informa-

tion from all other vehicles and detect faulty vehicles based

on the information.

D. Controller-Gain Adjustment

Since we cannot find the faulty vehicles in the beginning, all

controllers are first set to be the same as that in [1], meaning

that the controller Ci of κi only considers the positions sent

from κ0 and κi−1, i.e., gi,0(0) > 0, gi,i−1(0) > 0, and

gi,j(0) = 0 for j ̸= 0 and j ̸= i − 1. With this setting, the

system settling time can be small, but the steady state errors

will be affected by faulty positions. The goal of the controller-

gain adjustment here is to minimize the average steady state

errors by adaptively adjusting the controller gains.

When to trigger the detection has been described in Sec-

tion IV-B. Once it is triggered, it starts from the last vehicle

κN−1 to the leading vehicle κ0. If κj is detected as a faulty

vehicle, then the controller of κi will adjust the controller gain

by the following rule:

if gi,j(t) ̸= 0, then gi,j−1(t)← gi,j(t) and gi,j(t)← 0.

(13)

Following the design in Section IV-B, if Fj ≥ Dj · Θ for

each j ∈ I∗, then the controller-gain adjustment can reinstate

the normal behavior of the platooning (Θ is the threshold in

Equation (3)).

An example with five vehicles is shown in Figure 2. In

the example, κ2 and κ3 are faulty vehicles. In the begin-

ning, all controllers are set to be the same, meaning that

κi only considers the positions of κ0 and κi−1, and the

logical communication topology is shown in Figure 2(a). Each

vehicle triggers the detection and the following adjustment

are triggered at the same time. As the rule above, they start

from the last vehicle κ4 to the leading vehicle κ0. Once κ4

detects κ3 as a faulty vehicle, g4,2(t) is set to g4,3(t), and then

g4,3(t) is set to zero. At this point, the logical communication

topology is shown in Figure 2(b). Next, once κ4 and κ3 detects

κ2 as a faulty vehicle, g4,1(t) and g3,1(t) are set to g4,2(t) and

g3,2(t), respectively, and g4,2(t) and g3,2(t) are set to zero. At

this point, the logical communication topology is shown in

Figure 2(c). Since there is no other faulty vehicle, the logical

communication topology will stay as Figure 2(c).

V. EXTENSION TO FAULTY SPEED

We have developed the consensus-based fault-tolerant ap-

proach to deal with faulty positions in Section IV. In this

section, we extend the approach and develop a two-phase

mechanism to deal with a faulty speed of the leading vehicle

κ0. It should be emphasized that the first phase in the two-

phase mechanism is exactly the approach in Section IV,

meaning that we do not need to know the types (positions

or speed) of faults in advance. We will also show that the

developed approach can deal with the combination of faults

in Section VI.

The model of the faulty speed of κ0 is defined as Equa-

tion (7). Each vehicle κi in the platoon only considers the

positions of other vehicles and the speed of κ0, so the faulty

speeds of vehicles, except of κ0, do not cause steady state

errors or break the platoon. With the controller defined in

Section IV, we observe that the faulty speed of κ0 results in

position-state errors, while all vehicles still converge to the true

speed of κ0. This is because the controller tends to stabilize

the corresponding vehicle. If the vehicles in the platoon have

different speeds from the true speed of κ0, the platoon will

not become stable as the distances between vehicles constantly

change. As a result, the controller follows Equation (8) and

generates position-state errors.

Based on the observation, we develop a two-phase mech-

anism to deal with a faulty speed of κ0. In the first phase,

we can apply the fault-tolerant method, the fast fault-tolerant

method, and the modified CUBA method in Section IV. The

controller-gain adjustment can still be triggered, but adjusting

gi,j does not eliminate the position-state errors as the errors

result from the faulty speed of κ0. Therefore, if the position-

state errors are not eliminated after the controller-gain adjust-

ment, we know that the errors result from the faulty speed of

κ0. In the second phase, since the position-state errors are not

eliminated, all vehicles except κ0 give up the speed of κ0 and

regard κ1 as the dummy leading vehicle, i.e., gi(t) becomes

the controller gain of κi toward the speed reference from κ1 at

t. Then, gi,0 is set to 0, and the other controller gains are reset

to the initial values because the controller-gain adjustment in

the first phase is misled by the faulty speed of κ0.

VI. EXPERIMENTAL RESULTS

The whole experiments are simulated with Plexe [23] run-

ning on a virtual machine with VirtualBox, 4 processors, and

4GB memory. The virtual machine runs on a laptop with

Ubuntu 22.04, Intel HM470 Chipset, 12 i7-8750H processors,

16GB memory, and VT-x enabled. As the approach in [1]

is open-sourced and also experimented with Plexe, we have

successfully reproduced the results by plugging in the same

parameters except for some missing initial states. There are

five scenarios, all with 8 vehicles (N = 8), in our experiments:

Authorized licensed use limited to: National Taiwan University. Downloaded on November 26,2023 at 13:34:33 UTC from IEEE Xplore. Restrictions apply.

TABLE II
EXPERIMENTAL RESULTS OF SCENARIO 1A.

Avg. Steady Position- System
Method State Error (m) Settling Time (s)

[1] 1.61 43.3
All-Front 0.46 75.4

[2] < 0.01 97.2
Fault-Tolerant < 0.01 62.9

Fast Fault-Tolerant < 0.01 55.3
Modified CUBA < 0.01 58.0

• Scenario 1A: Single Faulty Position, where the posi-

tion of one vehicle is faulty with a constant.

• Scenario 1B: Single Faulty Position, where the posi-

tion of one vehicle is faulty with a sinusoidal function.

• Scenario 2: Multiple Faulty Positions, where the posi-

tions of multiple vehicles are faulty.

• Scenario 3: Different Safety Distances, where the po-

sition of one vehicle is faulty, and there are different

safety distances between vehicles.

• Scenario 4: Faulty Speed of Leading Vehicle, where

the speed of κ0 is faulty.

• Scenario 5: Combination of Faults, where the posi-

tions of multiple vehicles are faulty, and the speed of

κ0 is faulty.

There are six experimented methods (approaches):

• The Approach in [1], where κi only considers the po-

sitions of κ0 and κi−1, and the controller gain gi,j(t) is

kept constant.

• The “All-Front” Approach, where κi considers the po-

sitions of κ0, κ1, . . . , κi−1, and the controller gain gi,j(t)
is kept constant.

• The Approach in [2], where all vehicles collaboratively

detect the faulty vehicles at each time step, and κi

considers the positions of a specific set of vehicles.

• Our Fault-Tolerant Method which starts the faulty-

vehicle detection when all vehicles are steady and ex-

ecutes the controller-gain adjustment.

• Our Fast Fault-Tolerant Method which starts the

faulty-vehicle detection when N
2
= 4 vehicles are steady

and executes the controller-gain adjustment.

• Our Modified CUBA Method which also starts the

faulty-vehicle detection when 4 vehicles are steady and

executes the controller-gain adjustment. M is set to 1.

For Scenarios 4–5, our two-phase mechanism is integrated

with our methods for a faulty speed of the leading vehicle.

A. Scenario 1A: Single Faulty Position

The given parameters are listed as follows (the units are in

meter (m), second (s), or meter per second (m/s)):

• Xi = 46 · (8− i) for i = 0, 1, . . . , 7.

• Vi = (27, 25, 23, 22, 21, 20, 19, 18) for i = 0, 1, . . . , 7.

• Ai = 0, U+

i = 2.5, and U−

i = 9 for all i [1].

• Di = 37.2 for i = 1, 2, . . . , 7. [1].

• g1,0(0) = 460, gi,0(0) = 80 for i = 2, 3, . . . , 7,

gi,i−1(0) = 860 for i = 1, 2, . . . , 7, and gi,j(0) = 0
for the remaining cases.

TABLE III
EXPERIMENTAL RESULTS OF SCENARIO 1B.

Avg. Steady Position- System
Method State Error (m) Settling Time (s)

[1] No Steady State ∞

All-Front No Steady State ∞

[2] 0.03 97.5
Fault-Tolerant No Steady State ∞

Fast Fault-Tolerant < 0.01 50.5
Modified CUBA < 0.01 51.6

• F3 = −10, each other Fi = 0, and E = 0.

• Θ = 5%.

The experimental results with single constant faulty position

are listed in Table II. All vehicles controlled by all methods

have almost zero steady speed-state errors, so we only report

and discuss steady position-state errors. As the approach in [1]

only considers the positions of κ0 and κi−1, κ4 is affected by

the faulty positions sent from κ3, resulting in a large average

steady position-state error (1.61m). On the other hand, as the

all-front approach considers the positions of κ0, κ1, . . . , κi−1,

κ4 is still affected by the faulty positions sent from κ3 but

mitigated by the correct positions sent from κ0, κ1, κ2, result-

ing in a smaller average steady position-state error (0.46m),

compared with the approach in [1]. The approach in [2]

successfully detects κ3 as a faulty vehicle and has an almost

zero average steady position-state error, but its system settling

time is the longest (97.7s). The fault-tolerant method applies

the faulty-vehicle detection and the controller-gain adjustment

and has an almost zero average steady position-state error. The

system settling time is shortened (from 62.9s to 55.3s) by the

fast fault-tolerant method. The modified CUBA method also

has an almost zero average steady position-state error with

comparable system settling time (58.0s).

B. Scenario 1B: Single Faulty Positions

The given parameters are the same as Scenario 1A, except

the following parameter (the unit is in meter (m)):

• F3 = 10 sin(t) and each other Fi = 0.

The experimental results with single sinusoidal faulty position

are listed in Table III. The approach in [1] and the all-front

approach do not reach a steady state due to the oscillating

faulty positions sent from κ3. The fault-tolerant method does

not reach a steady state, either, because it starts the faulty-

vehicle detection only when all vehicles are steady. The

approach in [2] successfully detects κ3 as a faulty vehicle,

but its average steady position-state error (0.03m) and system

settling time (97.5s) are larger than those of the fast fault-

tolerant method (<0.01m and 50.5s) and the modified CUBA

method (<0.01m and 51.6s).

C. Scenario 2: Multiple Faulty Positions

The given parameters are the same as Scenario 1A, except

the following parameters (the units are in meter (m)):

• F1 = 15, F3 = −10, F4 = 5, and each other Fi = 0.

The experimental results with multiple faulty positions are

listed in Table IV. Similarly, all vehicles controlled by all

Authorized licensed use limited to: National Taiwan University. Downloaded on November 26,2023 at 13:34:33 UTC from IEEE Xplore. Restrictions apply.

TABLE IV
EXPERIMENTAL RESULTS OF SCENARIO 2.

Avg. Steady Position- System
Method State Error (m) Settling Time (s)

[1] 4.37 46.2
All-Front 2.72 79.3

[2] < 0.01 82.7
Fault-Tolerant < 0.01 71.8

Fast Fault-Tolerant < 0.01 64.7
Modified CUBA < 0.01 67.8

TABLE V
EXPERIMENTAL RESULTS OF SCENARIO 3.

Avg. Steady Position- System
Method State Error (m) Settling Time (s)

[1] 1.61 32.8
All-Front 0.46 57.0

[2] < 0.01 78.5
Fault-Tolerant < 0.01 58.7

Fast Fault-Tolerant < 0.01 45.6
Modified CUBA < 0.01 47.0

methods have almost zero steady speed-state errors, so we only

report and discuss steady position-state errors. The results are

similar to those in Scenario 1A. The approach in [1] has a

large average steady position-state error (4.37m), and the all-

front approach has a smaller average steady position-state error

(2.72m), compared with the approach in [1]. The approach

in [2] has an almost zero average steady position-state error,

but its system settling time is the longest (82.7s). Again,

the fault-tolerant method has an almost zero average steady

position-state error, and the system settling time is shortened

(from 71.8s to 64.7s) by the fast fault-tolerant method. The

modified CUBA method also has an almost zero average

steady position-state error with comparable system settling

time (67.8s).

D. Scenario 3: Different Safety Distances

The given parameters are the same as Scenario 1A, except

the following parameters (the units are in meter (m)):

• D1 = 52.2, D7 = 72.2, and each other Di = 37.2.

The experimental results with different safety distances are

listed in Table V. With the assumption that each vehicle knows

the safety distances for all vehicles in front of it, the experi-

mented methods have the same advantages and disadvantages

as described in Scenarios 1 and 2. The fault-tolerant method

has an almost zero average steady position-state error, and the

system settling time is shortened (from 58.7s to 45.6s) by the

fast fault-tolerant method. The modified CUBA method also

has an almost zero average steady position-state error with

comparable system settling time (47.0s).

E. Scenario 4: Faulty Speed of Leading Vehicle

The given parameters are the same as Scenario 1A, except

the following parameters (the units are in meter (m) or meter

per second (m/s)):

• Each Fi = 0 and E = −2.

The experimental results of faulty speed of κ0 are listed in

Table VI. Note that we do not include the steady state errors of

TABLE VI
EXPERIMENTAL RESULTS OF SCENARIO 4.

Avg. Steady Position- System
Method State Error (m) Settling Time (s)

[1] 1.23 42.4
All-Front 1.98 71.4

[2] 3.30 69.9
Fault-Tolerant < 0.01 69.0

Fast Fault-Tolerant < 0.01 69.0
Modified CUBA < 0.01 67.6

20 40 60 80 100 120 140 160
Time

15

20

25

30

35

40

45

50

55

Fo
llo

w
in

g
D

is
ta

nc
e.

1 2 3 4 5 6 7

Fig. 3. The gaps (m) to the front vehicles of ν1, ν2, . . . , νN−1 of the fast
fault-tolerant method along the time (s) in Scenario 4 (faulty speed of ν0).

the second vehicle in the calculation because κ0 is like leaving

the platoon, and the second vehicle becomes the dummy

leading vehicle after applying the two-phase mechanism. Also,

as mentioned in Section V, the faulty speed of κ0 results in

steady position-state errors, not steady speed-state errors. The

approach in [1] has a large average steady position-state error

(1.23m). The approach in [2] also has a large average steady

position-state error (3.30m) because it does not consider the

faulty speed of the leading vehicle. The two-phase mechanism

(no matter it works with the fault-tolerant method, the fast

fault-tolerant method, or the modified CUBA method) has an

almost zero average steady position-state error. In the first

phase of the two-phase mechanism, due to the position-state

errors resulting from the faulty speed of κ0, the controller-

gain adjustment is triggered, and we can observe a significant

turning point at t = 34.3s in Figure 3. At t = 53.0s, all

vehicles become stable, but the position-state errors are not

eliminated, which implies that the errors result from the faulty

speed of κ0. Therefore, in the second phase of the two-phase

mechanism, the vehicles behave as described in Section V and

achieve an almost zero average steady position-state error.

F. Scenario 5: Combination of Faults

The given parameters are the same as Scenario 1A, except

the following parameters (the units are in meter (m) or meter

per second (m/s)):

• F2 = 15, F3 = 15 sin(t), F4 = 5, and each other Fi = 0.

• E = −2.

The experimental results of faulty speed of κ0 are listed

in Table VII. The approach in [1], the all-front approach,

the approach in [2], and the two-phase mechanism with the

fault-tolerant method do not reach a steady state due to the

Authorized licensed use limited to: National Taiwan University. Downloaded on November 26,2023 at 13:34:33 UTC from IEEE Xplore. Restrictions apply.

TABLE VII
EXPERIMENTAL RESULTS OF SCENARIO 5.

Avg. Steady Position- System
Method State Error (m) Settling Time (s)

[1], All-Front, [2] No Steady State ∞

Fault-Tolerant No Steady State ∞

Fast Fault-Tolerant < 0.01 98.0
Modified CUBA < 0.01 98.2

sinusoidal fault. The two-phase mechanism with the fast fault-

tolerant method and the modified CUBA method detects the

faulty speed of κ0 and regard the second vehicle as the dummy

leading vehicle. Then, the faulty-vehicle detection detects the

faulty positions, and the controller-gain adjustment reinstates

the platooning. As a result, we have an almost zero average

steady position-state error, showing the capability of dealing

with the combinations of faults.

G. Summary

From the experimental results of different scenarios, we can

observe that the approach in [1] and the all-front approach are

vulnerable to the faulty position and speed information. The

approach in [2] and our fault-tolerant method are respectively

vulnerable to the faulty speed information and the sinusoidal

faulty position information. Our fast fault-tolerant method and

our modified CUBA method are robust against the faults. They

are also efficient to reach almost zero average steady position-

state error, especially when there is only faulty position

information. Last but not least, we would also like to point

out that reaching a steady state is crucial for energy efficiency.

With a sinusoidal fault, we compute the power consumption

and observe that failing to reach a steady state significantly

increases power consumption.

VII. CONCLUSION

We developed an advanced consensus-based approach de-

tecting faulty position and speed information from vehicles

and reinstating the normal behavior of the platooning. We also

relaxed a communication assumption with the modified CUBA

method. Experimental results demonstrated that the developed

approach outperforms the existing approaches [1], [2] and

achieves small steady state errors and small settling times

under scenarios with faults. Potential future work includes

considerations for different types of faults, testing methodolo-

gies with an exponential number of parameters and scenarios,

protection mechanisms against malicious attacks including

collusion between vehicles, and consensus problems in other

applications (such as lane merging, lane changing, intersection

management) of connected and autonomous vehicles.

REFERENCES

[1] S. Santini, A. Salvi, A. Valente, A. Pescapè, M. Segata, and R. Cigno.
A consensus-based approach for platooning with inter-vehicular com-
munications. In IEEE Conference on Computer Communications (IN-

FOCOM), pages 1158–1166, Apr 2015.
[2] A. Petrillo, A. Pescapé, and S. Santini. A collaborative control strategy

for platoons of autonomous vehicles in the presence of message fal-
sification attacks. In IEEE International Conference on Models and

Technologies for Intelligent Transportation Systems (MT-ITS), pages
110–115, 2017.

[3] T.-S. Dao, J. Huissoon, and C. Clark. A strategy for optimisation
of cooperative platoon formation. International Journal of Vehicle

Information and Communication Systems, 3(1):28–43, Aug 2013.
[4] P. Hao, Z. Wang, G. Wu, K. Boriboonsomsin, and M. Barth. Intra-

platoon vehicle sequence optimization for eco-cooperative adaptive
cruise control. In IEEE International Conference on Intelligent Trans-

portation Systems (ITSC), pages 1–6, Oct 2017.
[5] J. Heinovski and F. Dressler. Platoon formation: Optimized car to pla-

toon assignment strategies and protocols. In IEEE Vehicular Networking

Conference (VNC), pages 1–8, Dec 2018.
[6] E. Regnath and S. Steinhorst. CUBA: Chained unanimous byzantine

agreement for decentralized platoon management. In ACM/IEEE Design,

Automation & Test in Europe Conference & Exhibition (DATE), pages
426–431, 2019.

[7] E. van Nunen, J. Ploeg, A. Medina, and H. Nijmeijer. Fault tolerancy in
cooperative adaptive cruise control. In IEEE International Conference on

Intelligent Transportation Systems (ITSC), pages 1184–1189, Oct 2013.
[8] J. Han, M. Harishankar, X. Wang, A. Chung, and P. Tague. Convoy:

Physical context verification for vehicle platoon admission. In Interna-

tional Workshop on Mobile Computing Systems and Applications, pages
73–78, 2017.

[9] S. Ucar, S. Ergen, and O. Ozkasap. IEEE 802.11p and visible light
hybrid communication based secure autonomous platoon. IEEE Trans-

actions on Vehicular Technology, 67(9):8667–8681, 2018.
[10] J. Santhosh and S. Sankaran. Defending against sybil attacks in vehicular

platoons. In IEEE International Conference on Advanced Networks and

Telecommunications Systems (ANTS), pages 1–6, 2019.
[11] F. Boeira, M. Asplund, and M. Barcellos. Mitigating position falsifi-

cation attacks in vehicular platooning. In IEEE Vehicular Networking

Conference (VNC), pages 1–4. IEEE, 2018.
[12] S. Taylor, F. Ahmad, H. Nguyen, S. Shaikh, and D. Evans. Safety,

stability and environmental impact of FDI attacks on vehicular platoons.
In IEEE/IFIP Network Operations and Management Symposium, pages
1–6, 2022.

[13] M. Jagielski, N. Jones, C.-W. Lin, C. Nita-Rotaruand, and S. Shiraishi.
Threat detection for collaborative adaptive cruise control in connected
cars. In ACM Conference on Security & Privacy in Wireless and Mobile

Networks (WiSec), pages 184–189, 2018.
[14] F. Alotibi and M. Abdelhakim. Anomaly detection in cooperative

adaptive cruise control using physics laws and data fusion. In IEEE

Vehicular Technology Conference (VTC-Fall), pages 1–7, Sep 2019.
[15] S. Taylor, F. Ahmad, H. Nguyen, S. Shaikh, D. Evans, and D. Price.

Vehicular platoon communication: Cybersecurity threats and open chal-
lenges. In IEEE/IFIP International Conference on Dependable Systems

and Networks Workshops (DSN-W), pages 19–26, 2021.
[16] L. Lamport. Paxos made simple. ACM SIGACT News (Distributed

Computing Column) 32, 4 (Whole Number 121), pages 51–58, Dec 2001.
[17] D. Cavin, Y. Sasson, and A. Schiper. Consensus with unknown par-

ticipants or fundamental self-organization. Lecture Notes in Computer

Science, 3158, Jul 2004.
[18] D. Ongaro and J. Ousterhout. In search of an understandable consensus

algorithm. In USENIX Annual Technical Conference (ATC), pages 305–
319, Jun 2014.

[19] A. Benchi, P. Launay, and F. Guidec. Solving consensus in opportunistic
networks. In International Conference on Distributed Computing and

Networking, pages 1:1–1:10, 2015.
[20] J. Zhang, C. Sun, L. Wang, and J. Xia. Consensus tracking for multi-

vehicle system with a well-informed leader: Adaptive control method. In
Chinese Control and Decision Conference (CCDC), pages 1050–1054,
May 2011.

[21] J. Petit and Z. Mammeri. Dynamic consensus for secured vehicular ad
hoc networks. In IEEE International Conference on Wireless and Mobile

Computing, Networking and Communications (WiMob), pages 1–8, Oct
2011.

[22] M. Wegner, W. Xu, R. Kapitza, and L. Wolf. Byzantine consensus in
vehicle platooning via inter-vehicle communication. In Fachgespräch

Inter-Vehicle Communication, pages 20–23, 2016.
[23] M. Segata, S. Joerer, B. Bloessl, C. Sommer, F. Dressler, and R. Cigno.

Plexe: A platooning extension for Veins. In IEEE Vehicular Networking

Conference (VNC), pages 53–60, Dec 2014.

Authorized licensed use limited to: National Taiwan University. Downloaded on November 26,2023 at 13:34:33 UTC from IEEE Xplore. Restrictions apply.

