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Abstract

In recent years, several video quality assessment (VQA)
methods have been developed, achieving high performance.
However, these methods were not specifically trained for en-
hanced videos, which limits their ability to predict video
quality accurately based on human subjective perception.
To address this issue, we propose a stack-based framework
for VQA that outperforms existing state-of-the-art methods
on VDPVE, a dataset consisting of enhanced videos.

In addition to proposing the VQA framework for en-
hanced videos, we also investigate its application on pro-
fessionally generated content (PGC). To address copy-
right issues with premium content, we create the PGCVQ
dataset, which consists of videos from YouTube. We evalu-
ate our proposed approach and state-of-the-art methods on
PGCVQ, and provide new insights on the results. Our ex-
periments demonstrate that existing VQA algorithms can be
applied to PGC videos, and we find that VQA performance
for PGC videos can be improved by considering the plot of
a play, which highlights the importance of video semantic
understanding.

1. Introduction

Video quality assessment (VQA) aims to evaluate the
quality of videos conforming to human subjective percep-
tion, with subjective feedback, such as mean opinion score
(MOS), as measurement. In recent years, many VQA meth-
ods have been proposed, and have achieved high perfor-
mance on various benchmarks [16, 32, 35, 50].

Video enhancement techniques, such as video super res-
olution (VSR) and video restoration, aim to improve the
quality of videos by generating high-resolution videos or
removing artifacts while objective metrics, such as PSNR
and SSIM [42], are commonly used to evaluate their per-
formance. Since these metrics for video enhancement are
pixel-based and cannot really reflect subjective perception,
an accurate VQA method would be beneficial to video en-
hancement research.

Previous research on VQA for video enhancement is
limited. To address this gap, we propose the Stack-Based
Video Quality Assessment network (SB-VQA). The SB-
VQA consists of the following components: feature extrac-
tors using FANet [43], patch-weighted convolution blocks,
and a final regression block. Firstly, a given video is sam-
pled with grid mini-patch sampling (GMS) [43] for com-
putational efficiency. The input is then processed by three
stacked feature extractors that perform self-attention inde-
pendently. Each extractor is followed by a dual-branch con-
volution block for better quality prediction. Finally, a re-
gression block generates the final prediction score by con-
sidering the outputs from each branch. SB-VQA is highly
scalable, allowing for an increase or decrease in the num-
ber of branches depending on the available computational
resources.

To evaluate the performance of SB-VQA, we bench-
marked our method against VQA datasets, including VD-
PVE [12], a recently proposed video enhancement dataset.
VDPVE consists of 1, 211 videos processed by a wide range
of enhancement methods such as color correction, bright-
ness adjustment, contrast enhancement, deblurring, and de-
shaking including recent state-of-the-art methods like Ba-
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sicVSR++ [5]. The results show that SB-VQA outperforms
existing VQA methods when fine-tuned on both VDPVE
and other datasets.

Since most video datasets, including VDPVE, contain
only user generated content (UGC), we wonder whether ex-
isting state-of-the-art VQA methods can also have good per-
formance on professionally generated content (PGC). PGC
videos, mostly produced in the film or television indus-
try, usually has much better quality compared with UGC
videos. Although PGC videos hardly contain distortions,
many applications such as VSR or video restoration on old
films require an accurate VQA approach on PGC videos
for benchmark. Therefore, we construct a PGC dataset for
video quality assessment (PGCVQ). PGCVQ contains offi-
cial movie trailers from YouTube with the Creative Com-
mons license. The PGC videos are encoded with differ-
ent bitrates, which is common in the streaming industry.
We also retrieve the heatmap information from YouTube
videos [1], which roughly represents viewers’ preference
for content. Our experiments on PGCVQ have two main
goals: (1) to verify the performance of existing state-of-the-
art VQA on PGC videos, and (2) to analyze the impact of
picture quality (resolution, degree of distortion) and human
interests. For the first goal, 1, 200 videos are randomly sam-
pled from PGCVQ to make predictions using our proposed
SB-VQA. For the second goal, we split a trailer into numer-
ous segments and predict quality scores on each segment.
We then analyze the results using heatmap to explore the
relationship between VQA and video content.

To sum up, our work has following contributions: (1) We
propose SB-VQA, a scalable stack-based VQA framework
that outperforms existing state-of-the-art algorithms on
benchmarks including VDPVE. (2) We construct PGCVQ,
a VQA dataset of professionally generated content. It can
benefit VQA, VSR, or video restoration research in the fu-
ture. Moreover, we verify the feasibility of applying exist-
ing VQA methods on PGC videos. (3) We analyze the VQA
task with PGC videos and video heatmaps. We conclude
that the content of a video does affect human subjective as-
sessment of quality.

2. Related Works
No-reference image and video quality assessment No-
reference quality assessment investigates the “quality” of
individual images or videos by themselves without any ref-
erence directly. At beginning, based-on the assumptions
that the natural scene statistics (NSS) extracted from natural
images are highly regular, several no-reference image qual-
ity assessment (IQA) methods have been developed such as
NIQE [31] and BRISQUE [30]. Deep learning-based no-
reference IQA methods further improve the performance in
terms of real-world distortions. MANIQA [46] outperforms
state-of-the-art methods on several standard datasets by a

large margin with integrating modules of ViT [9] and Swin
Transformer [26]. For no-reference VQA, a naive method is
to compute the quality of each frame via no-reference IQA
methods, and then pool them into the video quality score. A
comparative study of various temporal pooling strategies on
popular no-reference IQA methods can refer to [37]. Com-
pared to no-reference IQA, no-reference VQA further re-
quires the characterization of quality-aware temporal dis-
tortion, which amplifies the difficulty of quality assessment.
Some research combines the findings on the human visual
system, for example, TPQI is proposed to measure the tem-
poral distortion by describing the graphical morphology of
the representation [24]. Recently, due to the nature of sub-
jection of quality assessment, researchers attempt to explain
a single score of no-reference VQA into multiple perspec-
tives [41, 45]. For example, DOVER further separates the
quality of user generated content (UGC) videos based on
the technical and aesthetic perspectives, where the techni-
cal perspective, measuring the perception of distortions, and
the aesthetic perspective, which relates to preference and
recommendation on contents [45].

Fixed-feature-based video quality assessment In the
realm of video quality assessment (VQA), deep neural net-
works (DNNs) have shown potential for achieving high ac-
curacy. However, the computational cost of using DNNs on
high resolution videos can be prohibitively high. To address
this challenge, many VQA methods opt to train a feature
regression network using fixed deep features [23, 36]. For
instance, SimpleVQA [36] leverages spatial features from a
ResNet50 [15] backbone trained on ImageNet [8], as well
as motion features from a pre-trained SlowFastR50 [11]
model trained on the Kinetics 400 dataset [18], and then
regresses the features into quality scores. Other VQA meth-
ods [21, 48] use the feature extractors pre-trained with IQA
datasets [7, 10, 13, 17, 48]. By transferring knowledge from
IQA databases with authentic distortions, these methods are
able to generate quality-aware spatial feature representa-
tions without relying on pre-trained DNNs [21]. However,
the computational cost of these approaches remains high for
high resolution videos, and their accuracy may be limited by
the use of fixed features that are not optimized for quality-
related information extraction.

End-to-end deep video quality assessment Compared
with fixed feature extraction, end-to-end training enables
learning video-quality-related representations that better
represent quality information, which is believed to improve
the accuracy. Several DNNs are designed for jointly end-
to-end learning of features and regression based on the raw
input data [4,50]. However, these methods suit only on low
resolution videos; applying high resolution videos directly
to the existing methods leads to memory shortage problems
on GPU. Fast-VQA is therefore designed, which samples
mini-patches in uniform grids at raw resolution to improve



Figure 1. Overall framework of SB-VQA

the computational efficiency while maintaining the global
quality [43]. Though the efficiency and the results are im-
pressive over existing datasets, how it would perform on the
VQA for video enhancement and video compression in high
resolution videos remains unknown.

Quality assessment of video compression for PGC Most
existing works focus on VQA for UGC videos, and only
limited works address VQA for PGC videos. One possi-
ble reason may lie on the copyright issue. To investigate
how VQA performs on PGC, a dataset consisting of legal
PGC videos is required for benchmarking. To tackle this
problem, in this work, we build a PGC dataset based on the
official trailers released on Youtube as they are open to the
public.

3. Approach

In this section, we present the overall pipeline of our pro-
posed Stack-Based Video Quality Assessment (SB-VQA)
method for evaluating the quality of enhanced videos. To
address the challenge of bias introduced by a wide range
of video enhancements, we develop a novel stack-based
framework for quality prediction, with a two-stage training
strategy: a transformer-based block to predict the quality
directly from a sequence of frames, and then a regression
block to map the outputs of feature extractors to a final qual-
ity score. In the transformer-based block, we incorporate
Grid Mini-Patch Sampling (GMS) and Fragment Attention
Network (FANet) of Fast-VQA [43] to extract both spatial
and temporal information from videos. Then, inspired by
MANIQA [46], we further incorporate a dual branch con-
volution block into the FANet. The details are introduced in
the following subsections.

3.1. Overall Framework

Fig. 1 shows the overall framework of SB-VQA. To miti-
gate the negative effects of bias caused by diverse enhance-
ments in videos from the training set [20], we propose a
stack-based framework for the quality assessment. Inputs
are first sampled from videos using GMS, and then fed into
feature extractors which are fine-tuned with different data
splits and hyperparameters. A following regression block
maps the outputs of feature extractors to a final quality
score.

We train the framework consisting of K different feature
extractor models in two stages. First, the training set will
be divided into J folds. For each feature extractor model
k, J copies of k will be trained. The jth copy is trained
with {ith fold | i ≤ J and i ̸= j }, and will predict on
the jth fold. The predictions of all the folds can be served
as k’s prediction on the training set. In the second stage,
the K predictions, as well as their labels, will be taken as
meta-data to train the regression meta-model. In the testing
phase, predictions from all kth model’s copies are averaged,
and the K averaged predictions are fed into the regression
block for final quality score.

3.2. Grid Mini-patch Sampling (GMS)

In order to improve computational efficiency while pre-
serving the quality of original video, we use the GMS
method proposed in Fast-VQA to sample input videos to
“fragments”. First, each frame of a video is divided into
uniform grids. Then, a mini-patch is randomly selected
from every grid. Finally, the mini-patches are spliced into a
“fragment”, serving as the input of the following attention
layers. Note that the sampled mini-patch with original res-
olution is aligned in all the frames, so temporal as well as
spatial information can be well preserved.



Figure 2. Feature Extractor of SB-VQA

3.3. Feature Extractor

As shown in Fig. 2, the input fragment, spliced by the
sampled mini-patches, is fed into FANet, which includes
Swin Transformer blocks with Gated Relative Position Bi-
ases (GRPB) [43] to capture both local and global quality
for feature extraction. Specifically, Gated Relative Posi-
tion Biases (GRPB) is adopted in Swin Transformer Tiny
(Swin-T) [27] as the to obtain a learnable position bias ta-
ble for intra-patch and cross-patch attention respectively be-
cause intra-patch attention pairs have much smaller actual
distances than cross-patch attention pairs.

3.4. Dual Branch for Patch-weighted Prediction

Figure 3. Dual branch structure for computing each patch’s score
and weight

When assessing the quality of videos, people tend to
focus on certain regions of the videos, e.g., the center or
moving objects in the video. Moreover, a patch with bad
quality would have greater influence on quality score than
a patch with good quality does. To address the issue that
different regions on the resulting feature map have vary-
ing impacts on quality score, we integrate the dual-branch
structure [46] into Intra-Patch Non-Linear Regression [43]
to predict the weighted score from each patch, as shown in
Fig. 3. The structure consists of a scoring and a weighting

branch, in which the scoring branch predicts each patch’s
quality and the weighting branch estimates the importance
of each patch. The weighted sum of the two branches leads
to the quality score. Each branch consists of 3D convolution
and GeLU layers. Given a feature F, the two branches out-
put score and weight features respectively. Then, a quality
score is calculated from the multiplication of every patch’s
weight and score. We believe the dual branch structure of
patch-weighted quality prediction is closer to human per-
ceptions of videos.

4. Experiment

4.1. Dataset

VDPVE [12] is a recently proposed VQA dataset, which
contains videos processed by a variety of enhancement
methods. The dataset contains 1, 211 videos in total, con-
sisting of 600 videos with color, brightness, and contrast
enhancements, 310 deblurred videos, 301 deshaked videos,
and MOS of each video. The videos are obtained from orig-
inal videos selected from several datasets [3, 14, 16, 25, 28,
29,35,40] with 8 enhancement methods, 5 deblurring meth-
ods, and 7 deshaking methods. VDPVE is also the dataset
of NTIRE 2023 Quality Assessment of Video Enhancement
Challenge, and as participant of the competition, we only
have an average score of Pearson’s linear correlation coef-
ficient (PLCC) and Spearman rank correlation coefficient
(SRCC) on the test set. Therefore, here the average score is
compared on VDPVE. We also conduct the experiments on
LIVE-VQC [35], KoNViD-1k [16] and LSVQ [50]. Tab. 1
shows the summary of the datasets that are used in our ex-
periment.

4.2. Implementation Detail

All of our experiments are implemented with PyTorch
1.13.1 and ran on Amazon EC2 with one NVIDIA A10G
GPU. When applying Grid Mini-patch Sampling, we divide
each video frame into 7 × 7 grids, and the size of a patch
sampled from a grid is set to 32. For FANet, a window size
of (8, 7, 7) is adopted. An AdamW optimizer is adopted,
and the learning rate is 0.001. In each branch of the patch-
weighted convolution block, the input and output channels
of the two 3D convolution layers are (768, 128) and (128, 1)
respectively. Considering the diverse data distribution of the
VDPVE dataset, we choose the Extreme Gradient Boosting
[6] for the final score regression block.

Our stack-based framework consists of three branches
with the introduced feature extractor and patch-weighted
convolution block but different hyperparameters. Moreover,
we replace FANet in one of the three branches with its vari-
ant from Faster-VQA [44] to improve the performance in
NTIRE 2023 VQA Challenge.



Dataset No. of Video Video Duration (sec) Video Resolution

KoNViD-1k 1,200 8 540p
LIVE-VQC 585 10 240p–1080p

LSVQ 39,075 5–12 99p–4k
VDPVE 1,211 8–10 720p, 1080p

Table 1. Descriptive statistics for the included datasets.

KoNViD-1k LIVE-VQC VDPVEtrain

Method SRCC PLCC SRCC PLCC SRCC PLCC
TLVQM [19] 0.773 0.768 0.799 0.803 - -

VIDEVAL [38] 0.783 0.780 0.752 0.751 - -
PVQw/patch [47] 0.791 0.786 0.827 0.837 - -

VSFA [22] 0.773 0.775 0.773 0.795 - -
Fast-VQA [43] 0.891 0.892 0.849 0.865 0.820 0.829
DOVER [45] 0.909 0.906 0.860 0.875 0.840 0.841

SB-VQA (ours) 0.895 0.900 0.883 0.891 0.862 0.857

Table 2. Results of Fine-tuning LSVQ-trained models on different VQA datasets

4.3. Training & Evaluation

The framework is trained and fine-tuned in a two-stage
process detailed in Sec. 3.1. We first train the framework
with LSVQtrain dataset. Then, the VDPVE training set is
split into several folds for fine-tuning.

To evaluate the performance of our proposed framework,
we compare it to other VQA approaches on the VDPVE
test set. Additionally, we assess the generalization ability of
our framework on other in-the-wild VQA datasets, such as
KoNViD-1k and LIVE-VQC. We measure the performance
using PLCC and SRCC metrics.

4.4. Performance

VDVPE test set In Tab. 3, we compare the performance of
several state-of-the-art VQA methods on the VDPVE test
set, and all the methods are trained on the VDPVE train-
ing set. We use PLCC and SRCC to measure their perfor-
mances. The main score is defined as (SRCC+PLCC)/2,
which determines the final rank in the NTIRE 2023 VQA
Challenge. In the table, we can see that our approach has the
best prediction performance on the VDPVE test set. Note
that the VDPVE test set is not publicly disclosed, and par-
ticipants of the challenge only get the main score of their
final submission. We use the results from [12] for compari-
son.
Fine-tuning results on other datasets Tab. 2 shows the
performances of VQA approaches trained on LSVQ and
fine-tuned on different datasets. Inspired by the experiments
from [43], we divide each dataset into random splits for 10
times, and calculate the average performance on test split.
Our approach outperforms most others in all datasets. Two

VDPVEtest

Method SRCC PLCC Main Score
VIDEVAL [38] 0.5005 0.4724 0.4865
RAPIQUE [39] 0.5434 0.5393 0.5414
TLVQM [19] 0.5474 0.5509 0.5492

V-BLIINDS [34] 0.5652 0.5503 0.5578
VSFA [22] 0.5871 0.5424 0.5648
BVQA [21] 0.6995 0.6674 0.6835

Fast-VQA [43] 0.7350 0.7310 0.7330
SB-VQA (ours) - - 0.7635

Table 3. The official prediction performance of VQA approaches
on the NTIRE 2023 VQA Challenge test set.

state-of-the-art methods, Fast-VQA [43] and DOVER [45],
are also included in the comparison. Tab. 2 shows that our
approach achieves higher accuracy on VDPVE than the ex-
isting state-of-the-art. It implies that our approach has better
performance when fine-tuned on enhanced videos.

Cross-dataset test set In Tab. 4, we show the results of
cross-validation experiments, where models are trained on
LSVQ and tested on different datasets. While our approach
shows comparable performance with other approaches, it
does not outperform the existing state-of-the-art. The pos-
sible reason is that the regression block in our framework
causes an overfitting on the training/fine-tuning dataset.
Therefore, our approach performs better when fine-tuned
on a portion of the target dataset.



KoNViD-1k LIVE-VQC
Method SRCC PLCC SRCC PLCC

TLVQM [19] 0.732 0.724 0.670 0.691
VIDEVAL [38] 0.751 0.741 0.630 0.640

PVQw/patch [47] 0.791 0.795 0.770 0.807
VSFA [22] 0.784 0.794 0.734 0.772

Fast-VQA [43] 0.859 0.855 0.823 0.844
DOVER [45] 0.884 0.883 0.832 0.855

SB-VQA (ours) 0.841 0.838 0.821 0.848

Table 4. Results of cross-validation of LSVQ-trained models on
different VQA datasets

VDPVEtrain

Model Variants SRCC PLCC
FANet w/ IP-NLR 0.820 0.829

FANet w/ Patch-weighted Block 0.838 0.830
SB-VQA w/2 branches 0.848 0.840
SB-VQA w/3 branches 0.862 0.857

Table 5. Ablation study on patch-weighted convolution block and
stack-based strategy.

4.5. Ablation Study

In this section, we provide ablation experiments to prove
the effectiveness of patch-weighted convolution block and
the stack-based strategy of our framework. The model vari-
ants in Tab. 5 are first trained with LSVQ, then fine-tuned
on VDPVEtrain with the method mentioned in Sec. 4.4.

In the first two rows of Tab. 5, we compare the pro-
posed patch-weighted convolution block with Intra-Patch
Non-Linear Regression (IP-NLR) adopted in Fast-VQA. It
is shown that our proposed module achieves higher perfor-
mance, suggesting that the patch-weighted block leads to
better prediction conforming human perception.

We also analyze the effects of our stack-based strategy.
We compare SB-VQA with different number of stacked
branches in Tab. 5. It is shown that the stack-based strategy
leads to significant improvements, compared with FANet
w/ patch-weighted block, which is actually SB-VQA with
only one branch. It implies that the stack-based strategy is
helpful in reducing the bias introduced by the diverse en-
hancement methods.

5. Professionally Generated Content Analysis
In this section, we focus on the video quality assessment

for professionally generated content (PGC) videos (PGC
VQA). While PGC videos typically have fewer distortions
than user-generated content (UGC) videos, accurate VQA
is still essential for a variety of applications, including old
film restoration and video super resolution (VSR). An accu-

rate VQA method can provide human subjective feedback
on VSR, leading to more visually satisfying results. Be-
cause applications such as VSR on PGC videos have great
industrial value and few previous works focus on VQA for
PGC videos, we want to develop a solution of VQA on PGC
videos with high performance.

To evaluate the effectiveness of our proposed VQA
framework on PGC videos, we construct a PGC videos
dataset, PGCVQ, of movie trailers from YouTube. Then, we
fine-tune our proposed SB-VQA on VDPVE dataset, and
test on PGCVQ. Our aim is to verify whether the state-of-
the-art VQA method trained on UGC data can also perform
well on PGC data. Moreover, we analyze the VQA task
with different perspectives: we want to figure out whether
the quality of picture (resolution, degree of distortion) or
video content is more influential to human observation. To
our knowledge, this is the first work to discuss VQA meth-
ods on PGC videos.

5.1. PGC Dataset Construction

Figure 4. The pipeline of processing movie trailers from YouTube
with different encoding bitrates and resolutions. [2]

5.1.1 Original videos

Fig. 4 shows the process of constructing the dataset. We
first select official movie trailers released by movie studios
on YouTube with the Creative Commons license. For each
movie trailer, we obtain versions with different resolutions
directly from YouTube.

5.1.2 Diversity in quality

We transcoded the movie trailers of different content and
resolutions with six bitrates. It’s well-known that higher
encoding bitrates preserve more details and lead to better
perceptual quality under given encoder type, video content,
frame size and frame rate [49]. Video compression with
different encoding bitrates is common for PGC videos in the
streaming industry [33], so our works have contributions to
practical applications.



(a) Predicted MOS of 1080p videos (b) Predicted MOS of 720p videos

(c) Predicted MOS of 480p videos (d) Predicted MOS of 360p videos

Figure 5. The predicted Mean Opinion Score (MOS) consistently increases as the encoding bitrates increases for various resolutions,
including 320p, 420p, 720p, and 1080p.

5.1.3 Heat-Map of videos

Our dataset includes the Heat-Map information of movie
trailers from YouTube. Heatmaps use a graph on the seek
bar to highlight the most-watched parts of a video [1], which
represents the human interests. In general, a heatmap di-
vides a video into segments, each typically lasting 1 or 2
seconds, and assigns a score to each segment. The YouTube
heatmap facilitates the identification of the most visually
engaging scenes within a video.

5.2. Study

Our objectives are twofold: firstly, to evaluate whether
the predicted score obtained from SB-VQA is consistent
with the experience that higher encoding bitrates lead to bet-
ter perceptual quality for PGC videos; secondly, to observe
the relationship between the predicted perceptual quality
and the human interests. To achieve the first goal, we ran-
domly sampled 1, 200 videos, each with a length of 8 − 10
seconds, from PGCVQ. Then, we made predictions on the
1, 200 videos with our proposed SB-VQA trained on LSVQ.

For the second goal, we utilized the information obtained
from YouTube heatmap. We study the relationship between
VQA algorithms and video content.

5.2.1 Quality of Pictures

We make predictions on videos from PGCVQ with SB-
VQA. Fig. 5 shows the results of 12 randomly selected
clips. “Clip a” in the four figures represents the same con-
tent, and is encoded with different bitrates under each reso-
lution. It can be observed that videos with higher encoding
bitrates have higher predicted scores, which is consistent
with the fact that videos with high bitrates have better per-
ceptual quality. The similar predictions of a clip with differ-
ent resolutions may result from the gap between UGC/PGC
data and the diverse distributions between datasets.

Based on these results, we conclude that existing VQA
algorithms can be useful for many PGC-based applications,
such as VSR, denoising, old film restorations, which can
benefit video enhancement related research.



Figure 6. Correlation between YouTube heatmap-based content appeal (black line) and our predicted quality score (red dashed line) of
example videos, suggesting strong forecasting capability of appealing scenes.

5.2.2 Video Content

We offer a novel perspective on the VQA task by consider-
ing the relationship between users’ content preference and
perceived video quality. To explore this relationship, we
incorporate YouTube heatmaps of trailers into our experi-
ments.

To observe trends, we scale our predicted quality score
from 0 to 1 and compare it with the YouTube heatmaps for
all video segments. Figure 6 displays the trends of both
YouTube heatmaps and our predicted quality scores for 10
randomly selected movie trailers, where the y-axis repre-
sents the appealing degree of the video segments.

Based on our results, we observe that the YouTube
heatmaps and predicted quality scores show good consis-
tency, especially for Trailer 3, Trailer 4, Trailer 7, and
Trailer 8. Upon examining the segments more closely, we
find that action scenes and spectacular special effects tend
to attract and engage viewers, resulting in higher peaks and
higher predicted quality scores overall.

Interestingly, we observe opposite trends in our results
for Trailer 2, Trailer 6, Trailer 9, and Trailer 10. Upon closer
examination of these segments, we discover that some seg-
ments with high heatmap-based content appeal may be at-
tributed to factors other than visual attractiveness, such as
plot twists or unexpected developments in the story.

Taken together, our results suggest that existing VQA
algorithms have the potential to analyze the richness of a
video’s content. While these algorithms primarily focus on

the quality of the visuals, they also take into account the
overall appeal of the video’s content. We speculate that
a multi-modal model incorporating semantic understanding
could further improve VQA tasks.

6. Conclusion

To perform VQA tasks on video datasets with diverse en-
hancements, we propose a stack-based framework that can
reduce bias and achieve better performance than the exist-
ing state-of-the-art. We further discuss applying VQA on
PGC videos by building a movie trailer dataset. The re-
sults of our experiments show that VQA on PGC videos is
feasible, and is beneficial to related research, e.g., VSR or
restoration of classic films. Moreover, our analysis shows
that VQA relies not only on quality of pictures but also on
content. Semantic related research should be beneficial for
VQA tasks.
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